Хабр / ML & AI
483 subscribers
5.48K links
Telegram-канал, где вы можете найти публикации из RSS-фидов тематических хабов "Машинное обучение" и "Искусственный интеллект" портала Хабр.

Данный канал не является официальным представительством платформы Хабр.

Администратор - @evilfreelancer
Download Telegram
ИИ простыми словами, часть 1. Архитектура Mixture of Experts (MoE)

Когда я пишу новости про ИИ, то часто сталкиваюсь с проблемой: они пестрят техническими терминами, которые не всегда понятны даже людям использующим ИИ регулярно. SFT, MoE, RL/RLHF/DPO, миллионы их.

Я захотел описать самые популярные термины простым русским языком, чтобы каждый, даже нетехнический человек, мог разобраться в самой главной технологии современности. Чтобы когда я пишу статьи, я сразу мог бы дать ссылку на понятное и простое объяснение сложных терминов.

А ещё в этом проекте, мне захотелось сопровождать мои материалы симпатичными и понятными иллюстрациями на русском языке, поэтому я рисую их самостоятельно.

Так я начал свой хобби‑проект «AI человеческим языком». Каждую новую статью про популярный термин я хочу адаптировать под Хабр, и выкладывать сюда.

После громко стрельнувших DeepSeek V3/R1, и прочих, многие стали обращать внимание на то, что в описании моделей используется «архитектура Mixture of Experts». Также, её можно увидеть у Microsoft, Mistral, Facebook: Phi3.5-MoE, Mixtral, NLLB-200, и прочие.

Поэтому первое, о чем мне хочется рассказать — это архитектура «Mixture of Experts». Читать далее

#mixture_of_experts #moe #искусственный_интеллект #llm #deepseek #r1 | @habr_ai
Mixture of Experts: когда нейросеть учится делегировать

Привет, чемпионы!

Представьте, что у вас есть большой и сложный проект, и вы наняли двух управленцев: Кабан-Кабаныча и Руководителева. Вы даете им одинаковую задачу: набрать штат сотрудников и выполнить ваш проект. Вся прибыль вместе с начальным бюджетом останется у них.

Кабан-Кабаныч решил, что нет смысла платить отдельным специалистам по DevOps, backend, ML и другим направлениям, и нанял всего одного сотрудника за 80 монеток. Этот бедняга работал в стиле «один за всех» и, естественно, быстро выгорел и «умер». Кабан-Кабаныч, не долго думая, нанял еще одного такого же сотрудника. В итоге вы вернулись и увидели печальную картину: задачу никто не решил, остался лишь Кабан-Кабаныч и кладбище несчастных сотрудников. Читать далее

#moe #mixture_of_experts #llm #vmoes #deeplearning | @habr_ai