Хабр / ML & AI
484 subscribers
5.48K links
Telegram-канал, где вы можете найти публикации из RSS-фидов тематических хабов "Машинное обучение" и "Искусственный интеллект" портала Хабр.

Данный канал не является официальным представительством платформы Хабр.

Администратор - @evilfreelancer
Download Telegram
[Перевод] Fine-tuning больших языковых моделей в 2024 году

Не секрет, что большие языковые модели (LLM) эволюционируют с безумной скоростью и привлекают внимание всей отрасли генеративного ИИ. Корпорации не просто заинтригованы, они одержимы LLM, и в частности, потенциалом fine-tuning LLM. В исследования и разработку LLM сейчас вкладываются миллиарды долларов. Лидеры отрасли и энтузиасты технологий всё сильнее стремятся углубить своё понимание LLM и их fine-tuning. Эта сфера natural language processing (NLP) постоянно расширяется, поэтому критически важно иметь актуальную информацию. Польза, которую LLM могут принести вашему бизнесу, зависит от ваших знаний и понимания этой технологии.

Цикл жизни большой языковой модели состоит из множества важных этапов, и сегодня мы рассмотрим один из самых любопытных и активно развивающихся частей этого цикла — процесс fine-tuning моделей LLM. Это трудозатратная, тяжёлая, но перспективная задача, используемая во многих процессах обучения языковых моделей.

Читать дальше →

#машинное_обучение #data_labeling #data_annotation #dataset #разметка_данных #sft #fine_tuning #llm | @habr_ai
[Перевод] Как дообучать LLM с помощью Supervised Fine-Tuning

Обычно большие языковые модели (large language model, LLM) обучают в несколько этапов, включающих предварительное обучение и множество этапов fine-tuning (см. ниже). Предварительное обучение — это дорогостоящий процесс (например, требующий многих сотен тысяч долларов на вычислительные ресурсы), однако fine-tuning модели LLM (или контекстное обучение) по сравнению с этим гораздо дешевле (например, сотни долларов или даже меньше). Учитывая широкую доступность и бесплатность (даже для коммерческого использования) предварительно обученных LLM (например, MPT, Falcon или LLAMA-2), мы можем создавать большой спектр мощных приложений благодаря fine-tuning моделей под нужные задачи.

Этапы обучения LLM

На текущем этапе исследований ИИ одним из самых широко применяемых видов fine-tuning моделей LLM стал supervised fine-tuning (SFT). При этой методике курируемый датасет высококачественных выходных данных LLM применяется для непосредственного fine-tuning модели. SFT прост и дёшев в использовании, это полезный инструмент выравнивания языковых моделей, ставший популярным даже за пределами исследовательского сообщества опенсорсных LLM. В этой статье мы вкратце расскажем о принципах SFT, рассмотрим исследования по этой теме и приведём примеры того, как практикующие специалисты могут с лёгкостью пользоваться SFT, написав всего несколько строк кода на Python.

Читать дальше →

#машинное_обучение #data_labeling #data_annotation #dataset #разметка_данных #sft #fine_tuning #llm | @habr_ai