Хабр / ML & AI
483 subscribers
5.47K links
Telegram-канал, где вы можете найти публикации из RSS-фидов тематических хабов "Машинное обучение" и "Искусственный интеллект" портала Хабр.

Данный канал не является официальным представительством платформы Хабр.

Администратор - @evilfreelancer
Download Telegram
Автоматизация без кода: как FastML справляется с документами за несколько кликов

Привет, Хабр!

В этом посте хотим рассказать, как технология FastML (о самой разработке уже рассказывали здесь) начала работать на российских документах разного типа в контуре нашего продукта ContentCapture и что из этого вышло.

Вкратце введем в курс дела. Многие компании сталкиваются с необходимостью обрабатывать большое количество однотипных (не одинаковых) документов, извлекать из них нужную информацию и экспортировать. Естественно, это долго, мучительно, а иногда еще и с ошибками. Для автоматизации такой рутины и используется ContentCapture, а точнее, встроенные в него две технологии — гибкие описания и теперь еще и FastML. 

Гибкие описания — это универсальный подход к извлечению данных, особенно если речь идет о сложных документах. Однако для их создания нужно время и навыки работы со специальным инструментом — Content AI Layout Studio. Для тех, у кого таких скиллов нет, и был создан FastML, с которым сможет справиться любой пользователь, независимо от техподготовки. С помощью FastML модели для новых типов документов создаются в несколько кликов на основе нескольких примеров, что значительно сокращает время их внедрения в контур компании и бизнес-процессы. 

Под катом рассказываем и показываем, какие теперь документы могут автоматически обрабатывать пользователи ContentCapture с помощью встроенного в него FastML, а также делимся данными тестирования и объясняем, в чем могут возникнуть сложности. Читать далее

#ocr #распознавание_изображений #contentcapture | @habr_ai
Как мы делали технологию, которая умеет верифицировать подписи в документах

Верификация подписи — новая полезная фича для работы с документами, которая войдет в наш кросс-платформенный продукт ContentCapture для интеллектуаль­ной обработки информации. 

Задача технологии — помогать пользователям проверять подлинность подписи на документах в автоматическом режиме, тем самым упрощая ежедневные бизнес-процессы и обеспечивая более высокий уровень безопасности.

Ниже рассказываем, как мы создавали эту технологию. Читать далее

#подписи #верификация #ocr_технологии #ocr #разработка #contentcapture #j #обучение_нейронных_сетей | @habr_ai
Как мы создавали технологию валидации печатей

На рынке можно найти разные технологии по поиску печатей и подписей на документах. Мы в Content AI решили на этом не останавливаться и пошли дальше — помимо распознавания подписей и печатей, мы научились их валидировать. Обе технологии станут частью нашей универсальной платформы для интеллектуальной обработки информации ContentCapture и помогут пользователям еще быстрее обрабатывать большой поток документов. 

О том, как верифицировать подписи, мы поделились в предыдущем посте, а про технологию валидации печатей рассказываем под катом.  Читать далее

#валидация #обработка_изображений #ocr #contentcapture | @habr_ai
СontentCapture+LLM: как мы ускорили работу с неструктурированными документами

В эпоху цифровой трансформации каждая минута работы с документами на вес золота. Юридические отделы, банки, госучреждения ежедневно обрабатывают сотни договоров, доверенностей и судебных приказов. Ручной ввод данных, поиск реквизитов и проверка сроков могут отнимать до 20 минут на документ — и это если сотрудник не отвлекся на кофе. 

В нашей линейке продуктов есть универсальная IDP-платформа ContentCapture. Она хорошо понимает структурированные документы, а вот при обработке неструктурированных данных раньше могли возникать сложности. Чтобы решить эту проблему, мы в новом релизе продукта настроили интеграцию с облачными большими языковыми моделями (LLM), такими как YandexGPT и GigaChat. 

Делимся подробностями и рассказываем, как оценивали качество работы LLM с разными типами документов.  Читать далее

#contentcapture #llm #nlp #nlp_обработка_текста #обработка_документов | @habr_ai