Хабр / ML & AI
482 subscribers
5.5K links
Telegram-канал, где вы можете найти публикации из RSS-фидов тематических хабов "Машинное обучение" и "Искусственный интеллект" портала Хабр.

Данный канал не является официальным представительством платформы Хабр.

Администратор - @evilfreelancer
Download Telegram
ML-алгоритмы против хакеров: как поведенческая аналитика меняет правила игры в кибербезопасности

Здравствуйте, друзья! Меня зовут Алексей Потапов, и я представляю экспертный центр безопасности Positive Technologies. Ранее мы уже знакомили вас с ключевыми элементами нашего подхода к обнаружению атак на примере технологий в SIEM: механизме построения цепочек запускаемых процессов на основе нормализованных событий, автоматическом вайтлистинге и машинном обучении для выявления нестандартного поведения пользователей и процессов в инфраструктуре. Тему ML было бы невозможно раскрыть в одном посте, поэтому предлагаю углубиться в более технические детали.

Мы уже рассказывали про модуль Behavioral Anomaly Detection (BAD). Он работает как система second opinion — собирает данные о событиях и пользователях, присваивает им определенный уровень оценки риска (risk score) и выдает альтернативное мнение, основываясь на своих алгоритмах. Фишка BAD в том, что он снижает когнитивную нагрузку аналитика системы SIEM, позволяя эффективнее принимать решение по инциденту информационной безопасности.

В этой статье я расскажу, что делает модуль BAD не просто новым инструментом, а полноценным игроком в вашей команде кибербезопасности. Поговорим о перспективах, которые открывает его использование.

Подробности

#cybersecurity #soc #pentest #метапродукт #инциденты #threat_hunting #threat_intelligence #mashine_learning #offensive #artifactual_intelligence | @habr_ai