Квантовать или не квантовать LLM?
Многие онлайн-сервисы предлагают доступ к проприетарным LLM. Однако по различным причинам может возникнуть необходимость использовать эти модели на своем оборудовании. Аренда серверов, особенно с GPU, может быть дорогой и зависит от требований к RAM/VRAM. Квантование моделей помогает снизить эти требования.
Читать далее
#llm #квантование #llama_cpp | @habr_ai
Многие онлайн-сервисы предлагают доступ к проприетарным LLM. Однако по различным причинам может возникнуть необходимость использовать эти модели на своем оборудовании. Аренда серверов, особенно с GPU, может быть дорогой и зависит от требований к RAM/VRAM. Квантование моделей помогает снизить эти требования.
Читать далее
#llm #квантование #llama_cpp | @habr_ai
Хабр
Квантовать или не квантовать LLM?
Многие онлайн-сервисы предлагают доступ к проприетарным LLM. Однако по различным причинам может возникнуть необходимость использовать эти модели на своем оборудовании. Аренда серверов, особенно с GPU,...
Как мы прикрутили RAG для интент-классификации, или Трудности перевода на LLM-ский
И не опять, а снова — про этот ваш RAG. Многие продуктовые команды сейчас пробуют приспособить его для своих задач — и мы, команда Speech&Text в компании Домклик, не избежали этой участи. Но не (только) потому, что это модно и молодёжно — попробовать RAG‑подход нас побудила необходимость решить определённые насущные проблемы. Что же это за проблемы, как мы встраивали RAG и что из этого получилось? Если интересно узнать, то милости просим в текст :)
Читать далее
#rag #gemma2 #llm #llama_cpp #intent_recognition #retrieval_augmented_generation #gemma #time_to_market #ttm #чат_бот | @habr_ai
И не опять, а снова — про этот ваш RAG. Многие продуктовые команды сейчас пробуют приспособить его для своих задач — и мы, команда Speech&Text в компании Домклик, не избежали этой участи. Но не (только) потому, что это модно и молодёжно — попробовать RAG‑подход нас побудила необходимость решить определённые насущные проблемы. Что же это за проблемы, как мы встраивали RAG и что из этого получилось? Если интересно узнать, то милости просим в текст :)
Читать далее
#rag #gemma2 #llm #llama_cpp #intent_recognition #retrieval_augmented_generation #gemma #time_to_market #ttm #чат_бот | @habr_ai
Хабр
Как мы прикрутили RAG для интент-классификации, или Трудности перевода на LLM-ский
И не опять, а снова — про этот ваш RAG. Многие продуктовые команды сейчас пробуют приспособить его для своих задач — и мы, команда Speech&Text в компании Домклик,...
Как запустить локально LLM, если ее веса не помещаются в [видео]память
Некоторые люди предпочитают пользоваться не только облачными сервисами, но и запускать LLM у себя дома. Например, так можно запустить дообученные модели без цензуры, или не посылать в облако свои личные документы. А то и запускать бесчеловечные эксперименты над LLM так, чтобы superintelligence/skynet потом это не припомнил.
Есть много моделей, оптимизированых для быстрой работы на устройствах с небольшой памятью. Но, к сожалению, веса самых продвинутых моделей, которые играют в одной лиге с лучшими онлайн моделями, занимают сотни гигабайт. Например, 8-битные веса Deepseek R1-671B занимают 700 гигабайт, квантованые q4 — 350 гигов. Можно квантовать и в 1 бит, размер тогда будет около 90 гигов, но такая модель почти бесполезна. Еще есть много качественных finetunes на основе Mistral-Large-instruct-130B, Qwen2.5-72B, llama3.3-70B, веса которых также не помещаются в память старших моделей видеокарт. Читать дальше →
#llm #inference #llama_cpp #apple | @habr_ai
Некоторые люди предпочитают пользоваться не только облачными сервисами, но и запускать LLM у себя дома. Например, так можно запустить дообученные модели без цензуры, или не посылать в облако свои личные документы. А то и запускать бесчеловечные эксперименты над LLM так, чтобы superintelligence/skynet потом это не припомнил.
Есть много моделей, оптимизированых для быстрой работы на устройствах с небольшой памятью. Но, к сожалению, веса самых продвинутых моделей, которые играют в одной лиге с лучшими онлайн моделями, занимают сотни гигабайт. Например, 8-битные веса Deepseek R1-671B занимают 700 гигабайт, квантованые q4 — 350 гигов. Можно квантовать и в 1 бит, размер тогда будет около 90 гигов, но такая модель почти бесполезна. Еще есть много качественных finetunes на основе Mistral-Large-instruct-130B, Qwen2.5-72B, llama3.3-70B, веса которых также не помещаются в память старших моделей видеокарт. Читать дальше →
#llm #inference #llama_cpp #apple | @habr_ai
Хабр
Как запустить локально LLM, если ее веса не помещаются в [видео]память
Некоторые люди предпочитают пользоваться не только облачными сервисами, но и запускать LLM у себя дома. Например, так можно запустить дообученные модели без цензуры, или не посылать в облако свои...
Тестирование производительности видеокарт на примере больших языковых моделей с использованием Llama.cpp
В последнее время большие языковые модели (LLM) становятся все более популярными, но для их эффективного запуска требуется значительная вычислительная мощность. Один из способов запуска LLM локально - использование библиотеки Llama.cpp. В этой статье мы рассмотрим, как тестировать производительность видеокарт для LLM с использованием инструмента llama-bench, входящего в состав Llama.cpp.
Дисклеймер: Почему Llama.cpp, а не Ollama?
Прежде чем мы приступим к тестированию, важно объяснить, почему мы используем Llama.cpp напрямую, а не Ollama. Ollama – это удобная надстройка, упрощающая установку и запуск LLM. Однако, она добавляет дополнительный слой абстракции, который приводит к снижению производительности и ограничивает контроль над настройками. Llama.cpp же напротив предоставляет прямой доступ к аппаратным ресурсам и позволяет максимально оптимизировать запуск LLM на вашей системе. Если ваша цель – получить максимальную производительность и точно настроить параметры, Llama.cpp – отличный выбор. Читать далее
#бенчмарки #llm #llama_cpp #машинное_обучение #видеокарты #нагрузочное_тестирование | @habr_ai
В последнее время большие языковые модели (LLM) становятся все более популярными, но для их эффективного запуска требуется значительная вычислительная мощность. Один из способов запуска LLM локально - использование библиотеки Llama.cpp. В этой статье мы рассмотрим, как тестировать производительность видеокарт для LLM с использованием инструмента llama-bench, входящего в состав Llama.cpp.
Дисклеймер: Почему Llama.cpp, а не Ollama?
Прежде чем мы приступим к тестированию, важно объяснить, почему мы используем Llama.cpp напрямую, а не Ollama. Ollama – это удобная надстройка, упрощающая установку и запуск LLM. Однако, она добавляет дополнительный слой абстракции, который приводит к снижению производительности и ограничивает контроль над настройками. Llama.cpp же напротив предоставляет прямой доступ к аппаратным ресурсам и позволяет максимально оптимизировать запуск LLM на вашей системе. Если ваша цель – получить максимальную производительность и точно настроить параметры, Llama.cpp – отличный выбор. Читать далее
#бенчмарки #llm #llama_cpp #машинное_обучение #видеокарты #нагрузочное_тестирование | @habr_ai
Хабр
Тестирование производительности видеокарт на примере больших языковых моделей с использованием Llama.cpp
В последнее время большие языковые модели (LLM) становятся все более популярными, но для их эффективного запуска требуется значительная вычислительная мощность. Один из способов запуска LLM локально -...
Локальный DeepSeek-R1: Когда скорость улитки – не приговор, а точка старта
Локальный DeepSeek-R1-0528 на скромном железе? Реально. Со скоростью улитки? Первоначально – да. Но итог моего эксперимента: эту 'улитку' можно заставить работать вдвое быстрее. Читать далее
#deepseek #ai #llm #local_ai #epyc #deepseek_r1 #deepseek_v3 #llama_cpp #huggingface #gguf | @habr_ai
Локальный DeepSeek-R1-0528 на скромном железе? Реально. Со скоростью улитки? Первоначально – да. Но итог моего эксперимента: эту 'улитку' можно заставить работать вдвое быстрее. Читать далее
#deepseek #ai #llm #local_ai #epyc #deepseek_r1 #deepseek_v3 #llama_cpp #huggingface #gguf | @habr_ai
Хабр
Локальный DeepSeek-R1: Когда скорость улитки – не приговор, а точка старта
Зачем? У меня возникло желание запустить локальную версию DeepSeek R1 и V3. Это связано с необходимостью избежать рисков связанных с блокировками доступа и утечкой данных. Ещё добавилось желание...
Ускорение DeepSeek-R1 с подвохом: Когда токены в секунду врут о реальной скорости
Токены летят быстрее, а результат — медленнее: парадокс квантизации DeepSeek-R1. Замеры 4 версий модели доказали: уменьшение размера ускоряет генерацию отдельных токенов, но что происходит с общим временем ответа? Читать далее
#deepseek #deepseek_r1 #deepseek_r1_0528 #ai #llm #llm_модели #gguf #кодогенерация #local_ai #llama_cpp | @habr_ai
Токены летят быстрее, а результат — медленнее: парадокс квантизации DeepSeek-R1. Замеры 4 версий модели доказали: уменьшение размера ускоряет генерацию отдельных токенов, но что происходит с общим временем ответа? Читать далее
#deepseek #deepseek_r1 #deepseek_r1_0528 #ai #llm #llm_модели #gguf #кодогенерация #local_ai #llama_cpp | @habr_ai
Хабр
Ускорение DeepSeek-R1 с подвохом: Когда токены в секунду врут о реальной скорости
Введение После сборки домашнего сервера для работы с LLM DeepSeek-R1 подробно о нём можно прочитать в статье Локальный DeepSeek-R1-0528. Когда скорость улитки – не приговор, а точка старта возникла...
[Перевод] Видеокарты для нейросетей: две RTX 5060 Ti 16GB или одна RTX 3090 24GB? Тест LLM‑инференса
Мечтаете запустить нейросеть на компьютере и анализировать целые книги или сложные документы? Тогда объем VRAM и поддержка длинных контекстов — ваши главные приоритеты.
С появлением RTX 5060 Ti 16GB открылась интригующая возможность — собрать систему с двумя такими картами за 950 $, получив целых 32 ГБ VRAM! Но как этот дуал покажет себя против проверенной временем б/у RTX 3090 (~900 $), с её внушительными 24 ГБ и легендарной пропускной способностью?
Я провел тесты на реальных моделях (Qwen3 30B/32B), чтобы выяснить, какую видеокарту выбрать для нейросети в 2025 году, если ваша цель — запустить LLM на компьютере с максимальной отдачей, особенно для длинных контекстов. Читать далее
#видеокарты_для_нейросетей #rtx_5060_ti_16gb #rtx_3090_24gb #qwen3 #железо #тест_ии_моделей #инференс #llama_cpp #exllamav3 #tabbyapi | @habr_ai
Мечтаете запустить нейросеть на компьютере и анализировать целые книги или сложные документы? Тогда объем VRAM и поддержка длинных контекстов — ваши главные приоритеты.
С появлением RTX 5060 Ti 16GB открылась интригующая возможность — собрать систему с двумя такими картами за 950 $, получив целых 32 ГБ VRAM! Но как этот дуал покажет себя против проверенной временем б/у RTX 3090 (~900 $), с её внушительными 24 ГБ и легендарной пропускной способностью?
Я провел тесты на реальных моделях (Qwen3 30B/32B), чтобы выяснить, какую видеокарту выбрать для нейросети в 2025 году, если ваша цель — запустить LLM на компьютере с максимальной отдачей, особенно для длинных контекстов. Читать далее
#видеокарты_для_нейросетей #rtx_5060_ti_16gb #rtx_3090_24gb #qwen3 #железо #тест_ии_моделей #инференс #llama_cpp #exllamav3 #tabbyapi | @habr_ai
Хабр
Видеокарты для нейросетей: две RTX 5060 Ti 16GB или одна RTX 3090 24GB? Тест LLM‑инференса
Мечтаете запустить нейросеть на компьютере и анализировать целые книги или сложные документы? Тогда объём VRAM и поддержка длинных контекстов — ваши главные приоритеты....
Запускаем самый маленький квант DeepSeek R1 671B на игровом ПК и смотрим вменяемая ли она на огромном контексте (160к)
Релиз DeepSeek R2 официально отложен и пока R1 не потерял актуальность, попробуем запустить модель на домашнем ПК. Оригинальная DeepSeek R1 имеет размер 700гб, так как она обучалась в fp8, но если бы она обучалась в стандартных f16, её вес был бы 1400гб, а мы попробуем версию в 10 раз меньше. Запустим самый маленький 1.66-битный IQ1_S_R4 квант полноценной модели размером 130гб на игровом ПК, отдельно с 4090 и 4060ti. Загрузим туда очень-очень много контекста и проверим, такой квант всё ещё способен давать разумные ответы или нет. Читать далее
#llama_cpp #ik_llama #deepseek #локальные_нейросети #deepseek_r1 #deepseek_v3 | @habr_ai
Релиз DeepSeek R2 официально отложен и пока R1 не потерял актуальность, попробуем запустить модель на домашнем ПК. Оригинальная DeepSeek R1 имеет размер 700гб, так как она обучалась в fp8, но если бы она обучалась в стандартных f16, её вес был бы 1400гб, а мы попробуем версию в 10 раз меньше. Запустим самый маленький 1.66-битный IQ1_S_R4 квант полноценной модели размером 130гб на игровом ПК, отдельно с 4090 и 4060ti. Загрузим туда очень-очень много контекста и проверим, такой квант всё ещё способен давать разумные ответы или нет. Читать далее
#llama_cpp #ik_llama #deepseek #локальные_нейросети #deepseek_r1 #deepseek_v3 | @habr_ai
Хабр
Запускаем настоящую DeepSeek R1 671B на игровом ПК и смотрим вменяемая ли она на огромном контексте (160к)
Релиз DeepSeek R2 официально отложен и пока R1 не потерял актуальность, попробуем запустить модель на домашнем ПК. Оригинальная DeepSeek R1 имеет размер 700гб, так как она обучалась в fp8, но если бы...
Георгий Герганов, автор llama.cpp и звукового кейлогера
Многие пользуются YouTube, Netflix, но не подозревают о ключевых опенсорсных программах типа ffmpeg, которые работают на бэкенде этих сервисов. Похожая ситуация с нейронками, где многие знают программу Ollama для локального запуска моделей на CPU. Но мало кто понимает, что это всего лишь простенькая оболочка вокруг опенсорсной библиотеки llama.cpp на С, которая и делает инференс. Автор этой библиотеки, талантливый разработчик Георгий Герганов, мало известен широкой публике. Читать далее
#llama_cpp #ollama #llama #llm #георгий_герганов #georgi_gerganov #lm_studio #litellm #ggml #тензорная_алгебра | @habr_ai
Многие пользуются YouTube, Netflix, но не подозревают о ключевых опенсорсных программах типа ffmpeg, которые работают на бэкенде этих сервисов. Похожая ситуация с нейронками, где многие знают программу Ollama для локального запуска моделей на CPU. Но мало кто понимает, что это всего лишь простенькая оболочка вокруг опенсорсной библиотеки llama.cpp на С, которая и делает инференс. Автор этой библиотеки, талантливый разработчик Георгий Герганов, мало известен широкой публике. Читать далее
#llama_cpp #ollama #llama #llm #георгий_герганов #georgi_gerganov #lm_studio #litellm #ggml #тензорная_алгебра | @habr_ai
Хабр
Георгий Герганов, автор llama.cpp и звукового кейлогера
Многие пользуются YouTube, Netflix, но не подозревают о ключевых опенсорсных программах типа ffmpeg , которые работают на бэкенде этих сервисов. Похожая ситуация с нейронками, где многие знают...
Георгий Герганов, автор llama.cpp и звукового кейлогера
Многие пользуются YouTube, Netflix, но не подозревают о ключевых опенсорсных программах типа ffmpeg, которые работают на бэкенде этих сервисов. Похожая ситуация с нейронками, где многие знают программу Ollama для локального запуска моделей на CPU. Но мало кто понимает, что это всего лишь простенькая оболочка вокруг опенсорсной библиотеки llama.cpp на С, которая и делает инференс. Автор этой библиотеки, талантливый разработчик Георгий Герганов, мало известен широкой публике. Читать далее
#llama_cpp #ollama #llama #llm #георгий_герганов #georgi_gerganov #lm_studio #litellm #ggml #тензорная_алгебра | @habr_ai
Многие пользуются YouTube, Netflix, но не подозревают о ключевых опенсорсных программах типа ffmpeg, которые работают на бэкенде этих сервисов. Похожая ситуация с нейронками, где многие знают программу Ollama для локального запуска моделей на CPU. Но мало кто понимает, что это всего лишь простенькая оболочка вокруг опенсорсной библиотеки llama.cpp на С, которая и делает инференс. Автор этой библиотеки, талантливый разработчик Георгий Герганов, мало известен широкой публике. Читать далее
#llama_cpp #ollama #llama #llm #георгий_герганов #georgi_gerganov #lm_studio #litellm #ggml #тензорная_алгебра | @habr_ai
Хабр
Георгий Герганов, автор llama.cpp и звукового кейлогера
Многие пользуются YouTube, Netflix, но не подозревают о ключевых опенсорсных программах типа ffmpeg , которые работают на бэкенде этих сервисов. Похожая ситуация с нейронками, где многие знают...
Вайб-кодинг с доставкой на дом
Для многих рынок ИИ-решений представляется как конкурентная борьба облачных и open source-моделей, но спектр применения языковых моделей постоянно расширяется, закрывая все более узкие ниши. И сейчас все больше команд, даже среди лидеров, выкладывают свои специализированные модели в общий доступ открытыми не только для запуска, но и дообучения и доработок. Эти модели часто имеют более скромные системные требования по сравнению с облачными. Иногда настолько, что некоторые из них можно запускать на мобильных и встраиваемых устройствах даже без специальных нейро- или графических вычислителей. Такие тенденции требуют от ИТ-специалистов навыков в обращении с моделями, некоторые из которых мы рассмотрим в данной статье на примере настройки модели, ассистирующей в разработке программного кода на локальном ПК. Учитывая высокую динамику развития индустрии ИИ, приведенные решения не могут быть ультимативными и актуальными, однако, возможно, кому-то он помогут продвинуться в освоении навыков работы с LLM-моделями (Large Language Models - Большие языковые модели). Читать далее
#ollama #llama_cpp #вайб_кодинг #kubernetes | @habr_ai
Для многих рынок ИИ-решений представляется как конкурентная борьба облачных и open source-моделей, но спектр применения языковых моделей постоянно расширяется, закрывая все более узкие ниши. И сейчас все больше команд, даже среди лидеров, выкладывают свои специализированные модели в общий доступ открытыми не только для запуска, но и дообучения и доработок. Эти модели часто имеют более скромные системные требования по сравнению с облачными. Иногда настолько, что некоторые из них можно запускать на мобильных и встраиваемых устройствах даже без специальных нейро- или графических вычислителей. Такие тенденции требуют от ИТ-специалистов навыков в обращении с моделями, некоторые из которых мы рассмотрим в данной статье на примере настройки модели, ассистирующей в разработке программного кода на локальном ПК. Учитывая высокую динамику развития индустрии ИИ, приведенные решения не могут быть ультимативными и актуальными, однако, возможно, кому-то он помогут продвинуться в освоении навыков работы с LLM-моделями (Large Language Models - Большие языковые модели). Читать далее
#ollama #llama_cpp #вайб_кодинг #kubernetes | @habr_ai
Хабр
Вайб-кодинг с доставкой на дом
Для многих рынок ИИ-решений представляется как конкурентная борьба облачных и open source-моделей, но спектр применения языковых моделей постоянно расширяется, закрывая все более узкие ниши....
❤1