Почему простой парсер не всегда решает задачу: мой опыт интеграции спортивных API
В рамках собственной системы спортивной аналитики я хотел получить real-time доступ к данным о движении коэффициентов — в частности, с платформы pickingodds.com. У сервиса интересная фича — визуализация графика изменения линии по каждому событию. Это потенциально полезный источник вторичных сигналов (например, для обнаружения аномалий, связанных с резкой коррекцией маркет-мейкеров).
Изначальный план был прост: интегрироваться по REST API, выкачивать данные раз в несколько минут, писать в TSDB, использовать далее для анализа и фичей в ML-пайплайнах. На практике же всё быстро ушло в зону нетривиальной оптимизации. Читать далее
#pickingodds #коэффициенты_ставок #асинхронный_парсинг #rate_limiting #aiohttp #redis #kafka #timescaledb #lightgbm #ml_фильтрация_событий | @habr_ai
В рамках собственной системы спортивной аналитики я хотел получить real-time доступ к данным о движении коэффициентов — в частности, с платформы pickingodds.com. У сервиса интересная фича — визуализация графика изменения линии по каждому событию. Это потенциально полезный источник вторичных сигналов (например, для обнаружения аномалий, связанных с резкой коррекцией маркет-мейкеров).
Изначальный план был прост: интегрироваться по REST API, выкачивать данные раз в несколько минут, писать в TSDB, использовать далее для анализа и фичей в ML-пайплайнах. На практике же всё быстро ушло в зону нетривиальной оптимизации. Читать далее
#pickingodds #коэффициенты_ставок #асинхронный_парсинг #rate_limiting #aiohttp #redis #kafka #timescaledb #lightgbm #ml_фильтрация_событий | @habr_ai
Хабр
Почему простой парсер не всегда решает задачу: мой опыт интеграции спортивных API
Контекст В рамках собственной системы спортивной аналитики я хотел получить real-time доступ к данным о движении коэффициентов — в частности, с платформы pickingodds.com. У сервиса интересная фича —...