Грокаем C++
5.09K subscribers
7 photos
3 files
278 links
Два сеньора C++ - Владимир и Денис - отныне ваши гиды в этом дремучем мире плюсов.

По всем вопросам - @ninjatelegramm

Менеджер: @Spiral_Yuri
Реклама: https://telega.in/c/grokaemcpp
Мы на TGstat: https://tgstat.ru/channel/@grokaemcpp/stat
Download Telegram
Double-Checked Locking Pattern Classic
#опытным

Ядро идеи этого паттерна - тот факт, что решение из предыдущего поста неоптимально. Нам на самом деле нужно всего один раз взять замок для того, чтобы создать объект и потом не возвращаться к этом шагу. Если кто-то увидит, что наш указатель - ненулевой, то он даже не будет пытаться что-то делать и сразу вернется из функции.

Поэтому в паттерне блокировки с двойной проверкой, нулёвость указателя проверяется перед локом. Таким образом мы откидываем просадку производительности для подавляющего большинства вызова геттера синглтона. Однако у нас теперь остается узкое место - момент инициализации. И вот где появляется вторая проверка(всю обертку уже не буду писать для краткости).

static Singleton* Singleton::instance() {
if (inst_ptr == NULL) {
Lock lock;
if (inst_ptr == NULL) {
inst_ptr = new Singleton;
}
}
return inst_ptr;
}


Таким образом, даже если 2 потока войдут в первое условие и первый из них проинициализирует указатель, то второй поток будет вынужден проверить еще раз, можно ли ему создать объект. И грустный вернется из геттера, потому что ему нельзя.

Это классическая реализация, многие подписчики, думаю, видели ее. Однако от того, что она классическая, не следует, что она корректная.

Давайте посмотрим на вот эту строчку поближе:

inst_ptr = new Singleton;


Что здесь происходит? На самом деле происходят 3 шага:

1️⃣ Аллокация памяти под объект.

2️⃣ Вызов его конструктора на аллоцированной памяти.

3️⃣ Присваивание inst_ptr'у нового значения.

И вот мы, как наивные чукотские мальчики, думаем, что все эти 3 шага происходят в этом конкретном порядке. А вот фигушки! Компилятор, мать его ети. Иногда он может просто взять и переставить шаги 2 и 3 местами! И вот к чему это может привести.

Давайте посмотрим эквивалентный плюсовый код, когда компилятор переставил шаги:

static Singleton* Singleton::instance() {
if (inst_ptr == NULL) {
Lock lock;
if (inst_ptr == NULL) {
inst_ptr = // step 3
operator new(sizeof(Singleton)); // step 1
new(inst_ptr) Singleton; // step 2
}
}
return inst_ptr;
}


Че здесь происходит. Здесь просто явно показаны шаги. С помощью operator new мы выделяем память(1 шаг), дальше присваиваем указатель на эту память inst_ptr'у(шаг 3). И в конце конструируем объект. И напомню, это не программист так пишет. Это эквивалентный код тому, что может сгенерировать компилятор.

И этот код совсем не эквивалентен тому, что было изначально. Потому что конструктор Singleton может кинуть исключение и очень важно, чтобы есть он это сделает, то inst_ptr останется нетронутым. А он как бы изменяется. Поэтому, в большинстве случаев, компилятору нельзя генерировать такой код. Но при определенных условиях, он может это сделать. Например, если докажет сам себе, что конструктор не может кинуть исключение. И вот тогда происходит magic.

Тред №1 входит в первое условие, берет лок и выполняет шаги 1 и 3 и потом засыпает по воле планировщика. И мы имеем состояние, когда указатель проинициализирован, а объекта на этой памяти еще нет(шаг 2 не выполнен).

Тред №2 входит в функцию, видит, что указатель ненулевой и возвращает его наружу. А внешний код потом берет и разыименовывает указатель с непроинициализированной памятью. Уупс. UB.

Что можно сделать? Вообще говоря, ничего. Если сам язык не подразумевает многопоточности, то компилятор даже не думает о таких штуках и с его точки зрения все валидно. Даже volatile предотвращает реордеринг инструкций в рамках только одного потока. Но мы же в многоядерной среде и там существуют совершенно другие эффекты, о которых "безпоточные" С и С++ в душе не знают. Напоминаю, что мы до сих пор в эре до С++11. Завтра чуть ближе посмотрим на конкретные проблемы, при которых мы сталкиваемся, находясь в многопоточном окружении.

Criticize your solutions. Stay cool.

#concurrency #cppcore #compiler #cpp11
Что опасного в многопоточке?
#новичкам

Монстры, морские чудовища, жуткие болезни... Все это снится разработчику, ломающему голову над проблемой в его многопоточном коде. Что же такого трудного для понимания и для отлавливания может произойти?

Одна из многих проблем - когерентность кэша. У нас есть много вычислительных юнитов. У каждого из них есть свой кэш. И все они шарят общее адресное пространство процесса. Кэши напрямую не связаны с другими вычислительными юнитами, только со своими(это про кэши низких уровней). В такой архитектуре нужно четко определить механизм, по которому изменения одного кэша станут видны другому ядру. Такие механизмы есть. Например, упрощенный вариант того, что сейчас есть - модель MESI. Непростая штука и мы пока не будем разбираться в деталях. Важно вот что: на процесс, охватывающий промежуток от изменения одной кэш линии до того, как эти изменения станут доступны другому ядру, тратится время. И это не атомарная операция! То есть нет такого, что при каждом изменении кэш линии информация об этом инциденте моментально доходит до других юнитов и они тут же первым приоритетом подгружают новое значение. Это очень неэффективно. Поэтому может случиться такая ситуация, при которой переменная в одном кэше процессора уже изменилась, а в другом кэше еще осталась ее старая копия, которая используется другим процессором. Это и есть одна из граней проблемы когерентности кэша.

Если с одной операцией-то тяжко, то еще более bizarre ситуация становится, когда мы начинаем рассматривать две связанных операции. Представим себе такую картину:

struct Class {
Class(int a, int b, int c) : x{a}, y{b}, z{c} {}
int x;
int y;
int z;
};

Class * shared;

void fun() {
shared = new Class{1, 2, 3};
}


Функция fun выполняется в каком-то потоке и и меняет значения переменной. Логично, что в начале выполняется создание объекта, а потом присвоение указателя. Но это актуально лишь для этого потока и так это видит соотвествующее ядро. Мы ведь в многопоточной среде, здесь убивают...
Может произойти так, что данные в другой процессор подтянутся в обратном порядке. То есть в начале появится инициализированный указатель, указывающий на какую-то память, а потом подтянется инфа об созданном на этой памяти объекте. Вот и получается, что этот другой поток может сделать проверку:

if (shared) 
// do smt with object

И код войдет в условие, потому что указатель ненулевой. Но память по этому указателю будет еще не инициализирована. А это, друзья, наше любимое UB.

И это в точности то, что может происходить с нашим беднягой синглтоном! Если вы думаете, что lock на мьютексе вас спасет, то нет, не спасет!

Да, лок подразумевает барьеры памяти и при unlock'e изменения флашатся. Но на незащищенном чтении-то они подтягиваются без барьеров! Это был небольшой спойлер для шарящих за барьеры. О них не сегодня.

Именно поэтому даже если мы все вместе обмажемся маслом и начнем бороться volatile и будем везде его пихать, то это все равно не поможет. Жонглирование указателями тоже. Тут проблема даже не в том, что компилятор как-то переставляет инструкции. Помимо всего прочего и сам процессор может менять местами инструкции для большей производительности. На такие штуки мы уже никак не влияем. Просто смиритесь с тем, что природа многопоточного мира такая и с этим надо уметь работать и решать такие проблемы.

Завтра как раз об этом и поговорим.

Be able to work in multitasking mode. Stay cool.

#concurrency #cppcore
Ассемблер инициализации статических локальных переменных
#опытным

Пример из предыдущего поста - рабочая версия паттерна. Однако, нам, вообще говоря, можно всего этого не писать. Ведь начиная с С++11 нам гарантируют тред-сэйф инициализацию статических локальных переменных и можно просто писать:

Singleton& Singleton::getInstance() {
static Singleton instance;
return instance;
}


Мы посмотрели, как вся защита может выглядеть на уровне С++ кода. Но в примере сверху никакой защиты на этом уровне нет. А это значит, что она лежит ниже, на уровне машинных инструкций. Которые мы можем с горем-пополам прочитать в виде ассемблера.

Сейчас будет очень страшно, но я попытался оставить самые важные куски и места и опустил неважное. Показываю ассемблер под x86-64, сгенерированный gcc.

Singleton::getInstance():
1 movzbl guard variable for Singleton::getInstance()::instance(%rip), %eax
2 testb %al, %al
3 je .L19
4 movl $Singleton::getInstance()::instance, %eax
5 ret
.L19:
...
6 call __cxa_guard_acquire
7 testl %eax, %eax
8 jne .L20
.L9:
9 movl $Singleton::getInstance()::instance, %eax
10 popq %rbx
11 ret
.L20:
12 movl $Singleton::getInstance()::instance, %esi
{Constructor}
13 movl $guard variable for Singleton::getInstance()::instance, %edi
14 call __cxa_guard_release
{safe instance and return}



Так как код оперирует объектом, а не указателем, то и в ассемблере это отражено. Но да не особо это важно. Сейчас все поймете. Для удобства обращения к коду, пометил строчки номерами.

Итак, мы входим в функцию. И тут же на первой строчке у нас появляется строжевая гвардия для переменной instance. Гвардия защищена барьером памяти и она показывает, инициализирована уже instance или нет. Так как мы без указателей, то вместо загрузки указателя и установки барьера памяти тут просто происходит загрузка гард-переменной для instance в регистр eax. Дальше на второй строчке мы проверяем, была ли инициализирована instance. al - это младший байт регистра eax. Соотвественно, если al - ноль, то инструкция testb выставляет zero-flag и в условном прыжке на 3-ей строчке мы прыгаем по метке. Если al - не ноль, то наш синглтон уже инициализирован и мы можем вернуть его из функции. Получается, что это наша первая проверка на ноль.

На метке .L19 мы берем лок с помощью вызова __cxa_guard_acquire, которая используется для залочивания мьютексов. И снова проверяем переменную-гард на пустоту(напоминаем себе, что она в eax загружена), если до сих пор она нулевая, то прыгаем в .L20. Если уже не ноль, то есть переменная инициализирована, то проваливаемся в .L9, где кладем созданную переменную в регистр возврата значения на 9-й строчке и выходим из функции(10 и 11). Это была вторая проверка

На метке .L20 мы на 12-й строчке кладем наш неинициализированный синглтон в регистр для последующей обработки, а именно для конструирования объекта. На 13-й строчке кладем адрес гарда в регистр, чтобы чуть позже записать туда ненулевое значение aka синглтон инициализирован. Далее мы отпускаем лок с помощью __cxa_guard_release, делаем все необходимые завершающие действия и выходим из функции.

Повторю, что тут много всего пропущено для краткости и наглядности, но вы уже сейчас можете сравнить этот ассемблер с плюсовым кодом из вчерашнего поста и сразу же заметите практически однозначное соответствие. Именно так и выглядит DCLP на ассемблере.

Стоит еще раз обратить внимание на то, что __cxa_guard_acquire и __cxa_guard_release - это не барьеры памяти! Это захват мьютекса. Барьеры памяти напрямую здесь не нужны. Нам важно только защитить гард-переменную для синглтона, потому что проверяется только она.

Для пытливых читателей оставлю ссылочку на годболт с примером, чтобы желающие могли поиграться.

Dig deeper. Stay cool.

#concurrency #cppcore
XOR Swap

Есть такая интересная техника для свопинга содержимого двух переменных без надобности во временной третьей! Стандартный подход выглядит примерно так:

template <class T>
void swap(T& lhs, T& rhs) {
T tmp = std::move(lhs);
lhs = std::move(rhs);
rhs = std::move(tmp);
}


Все мы с программистких пеленок уже выучили это. И примерно так и реализована функция std::swap из стандартной библиотеки. Однако вот вам задали на собесе вопрос: "вот у вас есть 2 числа, но я хочу, чтобы вы обменяли их значения без временной переменной?". Какие мысли? Подумайте пару секунд.

Как всегда, на помощь приходит магия математики и битовых операций. Можно использовать 3 подряд операции xor над этими числами и мы получим нужный результат.

template <class T, typename std::enable_if_t<std::is_integral_v<T>> = 0>
void swap(T& x, T& y) {
if (&x == &y)
return;
x = x ^ y;
y = x ^ y;
x = x ^ y;
}


Доказывать сие утверждения я, конечно, не буду. Однако можете почитать в английской вики, там все подробно выводится из свойств Исключающего ИЛИ.

Тут есть один интересный момент, что в случае подачи на вход функции одной и той же переменной, то произойдет эффект зануления. Первый же xor занулит x, а значит и y. Поэтому в самом начале стоит условие на проверку одинакового адреса.

При подаче на вход просто одинаковых значений, все работает и без условия.

Ну и работает это дело только с целочисленными параметрами.

Но предостерегаю вас - не используйте эту технику в современных программах! Результаты этих трех ксоров напрямую зависят друг от друга по цепочке. А значит параллелизма на уровне инструкций можно не ждать.

Современные компиляторы вполне могут и соптимизировать третью переменную и вы ее вовсе не увидите в ассемблере. Да и еще и вариант с доп переменной тупо быстрее работает. Всего 2 store'а и 2 load'а, которые еще и распараллелить можно, против 3 затратных ксоров. Да и даже довольно тяжеловесная XCHG работает быстрее, чем 3 xor'а.

Зачем я это все рассказываю тогда, если эта техника уже никому не уперлась? Для ретроспективы событий. Дело в том, что раньше люди писали программы без компиляторов, напрямую на ассемблере. Плюс в то время компьютеры имели такое маленькое количество памяти, что биться приходилось буквально за каждый байт. А используя операции xor, мы экономим 33% памяти на эту операцию. Довольно неплохо. В стародавние времена как только не извращались люди, чтобы выжимать все из железа. Эх, были времена...

Понимание тонкостей операции xor и ее возможных приложений делают ее довольно мощным инструментом в низкоуровневых вычислениях. А в некоторых задачах вы и вовсе никогда даже не подумаете, что они могут наиболее эффективным образом решаться с помощью xor.

Learn technics from the past. Stay cool.

#cppcore #fun #algorithms
Порядок вызовов конструкторов и деструкторов дочерних классов
#новичкам

Сегодня такой, довольно попсовый пост. Но, как говорится, это база и это нужно знать.

Вот есть у вас какая-то иерархия классов.

struct Base1 {
Base1() {std::cout << "Base1" << std::endl;}
~Base1() {std::cout << "~Base1" << std::endl;}
};

struct Derived1 : Base1 {
Derived1() {std::cout << "Derived1" << std::endl;}
~Derived1() {std::cout << "~Derived1" << std::endl;}
};

struct Base2 {
Base2() {std::cout << "Base2" << std::endl;}
~Base2() {std::cout << "~Base2" << std::endl;}
};

struct Derived2 : Base2 {
Derived2() {std::cout << "Derived2" << std::endl;}
~Derived2() {std::cout << "~Derived2" << std::endl;}
};

struct MostDerived: Derived2, Derived1 {
MostDerived() {std::cout << "MostDerived" << std::endl;}
~MostDerived() {std::cout << "~MostDerived" << std::endl;}
};

MostDerived{};


Что мы увидим в консоли, если запустим этот код? Вот это:

Base2
Derived2
Base1
Derived1
MostDerived
~MostDerived
~Derived1
~Base1
~Derived2
~Base2


Мы имеем 2 невиртуальные ветки наследования в класса MostDerived. В самих классах могут быть виртуальные функции, это роли не играет. В этом случае правила конструирования объекта такое: переходим в самую левую ветку и вызываем поочереди констукторы базовых классов сверху вниз. Как только дошли до MostDerived, переходим вправо в следующую ветку и также вызываем конструкторы сверху вниз. И только после этого конструируем MostDerived.

В общем случае, для n веток, можно представить, что наш наследник - корень дерева с n ветками. Так вот для такого графа конструкторы вызываются, как при обходе в глубину слева-направо.

А вот деструкторами все легко, если вы запомнили порядок вызовов конструкторов. Деструкторы выполняются в обратном порядке вызовов конструкторов соответствующих классов. Вы можете заметить, что вывод консоли из примера полностью симметричен относительно момента, когда объект уже создан.

Казалось бы, тривиальное знание для программиста. Но очень важно осознавать эти вещи для того, чтобы понять более сложные концепции или отвечать на более сложные вопросы. Например: "Зачем нужен виртуальный деструктор?", "В какой момент инициализируется указатель на виртуальную таблицу?", "Какой конкретно метод вызовется, если позвать виртуальный метод из констуруктора базового класса?". Без четкого понимания базы создания объектов, на эти вопросы конечно можно заучить ответы, но понимания никакого не будет. А программирование - это только про понимание, как и любая другая техническая дисциплина.

Поэтому

Understand essence of basic concepts. Stay cool.

#OOP #cppcore
Виртуальный деструктор
#новичкам

Возможно САМЫЙ популярный вопрос на собеседованиях на джунов и мидлов. Оно и справедливо в принципе: очень простой и понятный вопрос, но ответ на него требует хорошего уровня понимания ООП в принципе и как оно конкретно работает в плюсах. Динамический полиморфизм, наследование, порядок вызовов конструкторов и деструкторов - да, это база. Но именно ее и нужно проверить у начинающих и продолжающих разработчиков.

Обычно они заходят немного издалека и просят вангануть, что выведется в консоль для примерно такого кода:

struct Resource {
Resource() { std::cout << "Resourse has been acquired\n";}
~Resource() { std::cout << "Resource has been released\n";}
};

struct Base {
Base() { std::cout << "Base Constructor Called\n";}
~Base() { std::cout << "Base Destructor called\n";}
};

struct Derived1: Base {
Derived1() {
ptr = std::make_unique<Resource>();
std::cout << "Derived constructor called\n";
}
~Derived1() {std::cout << "Derived destructor called\n";}
private:
std::unique_ptr<Resource> ptr;
};

int main() {
Base *b = new Derived1();
delete b;
}


Вроде ничего сложного, но вот надо все штуки вспомнить, как там объекты создаются, в каком порядке что вызывается. Для начинающих тут часто затупки начинаются.

В коде вроде все хорошо написано и невнимательный кандидат может выдать вот это:

Base Constructor Called
Resourse has been acquired
Derived constructor called
Derived destructor called
Resource has been released
Base Destructor called


Вот тут-то его и подловили! На самом деле никакого деструктора наследника вызвано не будет и соответственно ресурсы не освободятся. Интервьюер дает наводку посмотреть на деструктор базового класса. И кандидат с красным лицом кричит: "Деструктор - невиртуальный! По указателю на базовый класс вызовется сразу деструктор базового класса, а деструктор дочернего не вызовется. Будет утечка памяти". Его так на курсах научили говорить. И дальше он выдает правильный вывод программы.

И тут интервьюер говорит: "А что будет, если наследник не будет содержать никаких полей? Какие проблемы будут у этого кода?".

И молодой разработчик в ступоре: он же знает, что невиртуальный деструктор приводит к утечкам. Но тут вроде как и утекать нечему. И говорит, что вроде как и проблем не будет.

Естественно, это неправда.

Если с виду ничего плохого не может произойти и даже при запуске программы ничего плохого не происходит - это не значит, что в программе нет проблем. Стандарт говорит:

if the static type of the object to be deleted 
is different from its dynamic type, the static type
shall be a base class of the dynamic type of
the object to be deleted and the static type
shall have a virtual destructor or
the behavior is undefined.


Отсутствие виртуального деструктора при удалении через базовый класс приводит к неопределенному поведению. И точка. Можете даже больше не упоминать утечки. Потому что может память утечь, а может и Пентагон задудосится от такой программы. Никто не знает.

Для корректного поведения полиморфных объектов и вызова деструктора дочернего класса вам обязательно нужен виртуальный деструктор базового класса.

Часто встречал эту проблему у младших разработчиков, да и сам я спотыкался на этом. Но теперь наши подписчики вооружены и опасны!

Stay armed. Stay cool.

#cppcore #interview
Default member initializer
#новичкам

Представьте себе большой класс, определенный целиком в одном файле. Этак строк на 300-400. Обычно принято в таком порядке описывать класс: конструкторы, деструктор, методы и только потом поля. Вариации могут быть разными, но из моей практики одно остается неизменным: объявления конструктора и полей находятся в разных концах тела класса. И вот бывают случаи, когда при создании объекта какие-то поля получают свое значение не из внешних параметров, а какие-то заранее заданные. Дефолтовые.

И вообще было бы очень приятненько видеть значения по умолчанию полей каждый раз, когда мы встречаем их объявления в теле класса. Если бегло читать код, то часто приходится смотреть на список полей. И было бы просто удобно не возвращаться к конструкторам каждый раз, чтобы вспомнить эти значения, а иметь их сразу рядом с объявлением полей.

Такие удобства появились у нас в C++11 - default member initializer. Это именно то, что и хотелось иметь в описанных выше ситуациях. Пример

template<typename T>
struct Stack {
// rule of 5
void push(const T& elem) {...}
void push(T&& elem) {...}
T& front() {...}
T& front() const {...}
void pop() {}
T GetMinElem() {...}
private:
std::deque<T> container;
T min_elem{Limit<T>::max_value};
}

Здесь мы создает простой шаблонный класс стека с одной особенностью: в каждый момент времени вы можете из этого стека получить самое минимальное значение из тех элементов, которые содержатся в этом стеке. Кстати, вам задачка на подумать, как такое можно сделать.

Пример здесь сильно укороченный. Если реализовывать все по чесноку, то реализация такого шаблонного класса займет приличное количество места. Вариантов методов и конструкторов может быть миллион. И я не очень хочу в них возвращаться, чтобы узнать, какое изначальное состояние имеет поле min_elem. А здесь мы сразу видим: у пустого стека примем значение минимального элемента, как максимально возможное значение этого типа. Тогда при добавлении в стек первого элемента для обновления минимума мы можем пользоваться тем же условием, что и для добавления остальных элементов
if (new_elem <= min_elem)
min_elem = new_elem;

Limit<T> - шаблонный класс, который хранит максимальное и минимальное значение для заданного шаблонного типа. Это может быть реализовано как угодно: через явные специализации, через if constexpr и так далее. Шаблонная магия в общем. Кто хочет, опять же, может в комментах попрактиковаться в реализации этого класса.

Кто не знал - пользуйтесь, вещь полезная.

Stay useful. Stay cool.

#cpp11 #cppcore
Сочетание member initialization list и default member initializer
#опытным

Вот здесь мы поговорили о том, почему важно соблюдать порядок следования полей класса в списке инициализации конструктора. Дело в том, что вне зависимости от того, как написан этот список, поля будут инициализироваться в порядке появления их объявления.

Также в С++11 у нас появилась фича под названием default member initializer. Это та самая штуковина, которая позволяет вам инициализировать нестатические поля класса не в конструкторе, а прям inplace. Типа того:

struct Class {
int field = 5;
};


Фича полезная, многие ей часто пользуются. Но вот возникает вопрос: как список инициализации конструктора взаимодействует с default member initializer? Если я инициализирую поля вне конструктора и компилятор видит эти значения явным образом, то возможно эти поля и получают значение первыми? Сейчас все узнаем.

Посмотрим на такой пример:

struct Char {
Char(char c) : field{c} {std::cout << "Char " << field << std::endl;}
Char() = default;
char field;
};

struct TestClass {
TestClass() : a{'1'},
c{'3'},
e{'5'} {}
Char a;
Char b = '2';
Char c;
Char d = '4';
Char e;
};


Есть простенький класс Char, который выводит на консоль момент создания объекта. И тестовый класс, на котором мы и проводим эксперимент. И в этом эксперименте мы и проверим, в каком порядке свои значения получают поля b и d, относительно a, c, e.

На самом деле здесь правило ровно такое же. Нестатические поля класса инициализируются в порядке их появления в описании класса. Поэтому вывод будет таким:

Char 1
Char 2
Char 3
Char 4
Char 5


С этим разобрались.

И тут назревает вопрос: а что будет, если я в начале проициализирую поле inplace, а потом еще раз в constructor initializer list? Какая из инициализаций победит другую? Или быть может они произойдут обе в какой-то очередности?

Выглядеть это может так:

struct Char {
Char(char c) : field{c} {std::cout << "Char " << field << std::endl;}
Char() = default;
char field;
};

struct TestClass {
TestClass() : a{'1'},
b{'2'},
c{'3'},
d{'4'},
e{'5'} {}
Char a;
Char b = 'b';
Char c;
Char d = 'd';
Char e;
};


Опять в подопытные мы взяли поля b и d и задали им значения с помощью default member initializer. А вдогонку еще и в списке инициализации присвоили им значение.

В такой ситуации default member initializer не играет никакой роли, блаженно складывает лапки и отдает бразды правления списку инициализации. Вывод будет тем же, что и в прошлом примере:

Char 1
Char 2
Char 3
Char 4
Char 5


Но это только список инициализации так работает. Если для инициализации поля вы используете обычный конструктор, то оно первый раз проинициализируется с помощью default member initializer(которая обязательно происходит до входа в тело конструктора), а второй раз - в теле конструктора.

struct TestClass {
TestClass() : a{'1'},
c{'3'},
d{'4'},
e{'5'} {b = '2';}
Char a;
Char b = 'b';
Char c;
Char d = 'd';
Char e;
};
// Output

Char 1
Char b
Char 3
Char 4
Char 5
Char 2


Пишите в комменты, если есть еще какие-то интересные кейсы взаимодействия этих сущностей. В будущем, разберем их на канале.

Mix things properly. Stay cool.

#cpp11 #cppcore
​​Member initialization. Best practices
#новичкам

Пост по запросу подписчика. Вот его вопрос.

И реально ведь непонятно, что делать. Столько разных вариантов и возможностей можно придумать для инициализации полей класса, что голова ходит кругом. Какой метод самый оптимальный? Сейчас и будем разбираться.

Здесь я буду приводить какое-то общие и распространенные принципы. К каждому можно придраться и сказать "а у нас в проекте по-другому!". Исключения и другие подходы есть везде. Если хотите высказать свои варианты - комменты открыты.

Начну с того, что нужно предпочитать инициализировать поля либо с помощью списка инициализации конструктора, либо с помощью default member initializer. Дело в том, что все поля на самом деле инициализируются до входа в конструктор! Если списком инициализации или default member initializer'ом не установлено, как поле должно инициализироваться, то в конструктор оно попадет инициализированным по умолчанию. Именно поэтому, например, не можете в конструкторе инициализировать объект класса, у которого нет конструктора по умолчанию. Будет ошибка компиляции и у вас потребуют дефолтный конструктор. Запомните: конструктор нужен для нетривиальных вещей. С простой иницализацией справятся ctor initialization list и инициализатор по умолчанию.

Далее. Остается 2 способа, как инициализировать. Какой из них выбрать и в какой пропорции смешивать?

CppCoreGuidelies говорят нам: "Prefer default member initializers to member initializers in constructors for constant initializers".

То есть, если инициализатор константный, то используйте default member initializer.

Причина: inplace инициализатор делает явным то, что именно эти дефолтовые значения будут использоваться во всех конструкторах. Пример:

class X { // BAD 
int i;
string s;
int j;
public:
X() :i{666}, s{"qqq"} { } // j is uninitialized
X(int ii) :i{ii} {} // s is "" and j is uninitialized
// ...
};


Как в этом случае читатель кода поймет, была ли инициализация j специально пропущена(что скорее всего не очень гуд) или было ли для s намеренным выставление его значения в "qqq" в первом случае и в пустую строку во втором случае(почти стопроцентный баг)? Все эти ошибки могут появиться при добавлении новых полей в класс. По классике: добавили новое поле, использовали его в методах, но вот в одном месте упустили инициализацию. Кейс настолько жизненный, что мое почтение.

Более адекватный вариант:
class X2 { 
int i {666};
string s {"qqq"};
int j {0};
public:
X2() = default; // all members are initialized to their defaults
X2(int ii) :i{ii} {} // s and j initialized to their defaults
// ...
};


Красота. Все в одном месте, все четко и понятно. Тут используется одна фишка: у вас есть несколько конструкторов, которые могут выставлять значения полям, а могут и не выставлять. Вы в одном месте определяете дефолтные значения и в списках инициализации конструкторов переопределяете инициализирующее значение для нужного поля, так как список подавляет инициализатор по умолчанию.

Также это более читаемый вариант, так как все дефолтные значения находятся в одном месте и не нужно бегать глазами по коду в их поисках.

Используйте default member initializer и будет вам счастье!

Stay happy. Stay cool.

#cpp11 #cppcore #goodpractice
​​Short circuit для кастомных операторов
#опытным

Есть одно важное уточнение, которое не было упомянуто в посте про short-circuit операторы, но несколько комментаторов на это указывали. Прочитайте, кстати, пост, если впервые видите словосочетание short circuit.

В плюсах короткосхемностью обладают операторы && и ||. Из коробки их операндами могут быть переменные логического, целочисленного и указательного типа. Однако они все так или иначе приводятся к типу булеан. Поэтому в принципе корректно говорить, что логические операторы работают только с логическими типами. Что в целом довольно логичная логика.

Однако есть в этом Эдеме есть и змий искуситель, который портит всю малину. Эти операторы можно перегружать для кастомных типов. И тогда они теряют свои короткосхемные свойства.

Взгляните на следующий код:


struct CustomStruct
{
int number = 0;
bool operator&&(const CustomStruct& other)
{
return number && other.number;
}
};

static int check = 0;

CustomStruct func()
{
check = 1;
return CustomStruct{};
}

int main() {
CustomStruct a{};
a && func();
std::cout << check << std::endl;
}


Здесь мы создаем самую простую структурку и перегружаем для нее оператор логического И. Дальше, чтобы проверить ленивость вычисления оператора, пишем простую функцию, которая при исполнении изменяет статическую переменную. Так мы сможем наверняка убедиться, выполнилась ли функция или нет: если выполнилась, то переменная check будет выставлена в единицу, если нет, то останется нулем.

И вывод будет реально "1". Что выглядит довольно печально.

Ну и кстати, такое поведение довольно легко объяснить. Когда мы перегружаем операторы, то мы создаем новые функции. И я хочу акцентировать на этом внимание: это именно пользовательские функции, как бы они там не назывались. А аргументы пользовательских функций должны быть вычислены ДО захода в функцию. Поэтому любые операнды должны быть полностью вычислены до вычисления значения всего выражения. Это и приводит к отсутствию свойства short circuit.

Хотя в том виде, в котором оператор перегружен в коде выше, внутри него используется short circuit операция и на самом деле второй операнд не будет учитываться, если у вызываемого объекта поле класса равно нулю. Но за счет того, что мы обязаны вычислить второй операнд, то просто технически не выполняются требования короткой схемы вычислений.

Встроеные же операторы реализованы на более низком уровне и не являются в прямом смысле функциями. И в эту реализацию изначально заложен короткосхемный функционал.

Однако есть способ разрешить ленивое вычисление логического И или ИЛИ для кастомных типов. Но об этом в следующий раз.

Don't loose your properties. Stay cool

#cppcore