GitHub Разработчика
17.2K subscribers
568 photos
345 videos
2 files
906 links
Здесь ты найдешь полезные репозитории с GitHub

Связь: @devmangx

РКН: https://clck.ru/3FocDP
Download Telegram
Constrict

Нужно сжать видео до заданного размера для загрузки. Ручная подгонка битрейта с кучей проб и ошибок отнимает время, а онлайн-сервисы вызывают вопросы к приватности и скорости.

На GitHub нашелся Constrict — open-source инструмент для сжатия видео. Ты просто задаешь целевой размер файла, а он сам рассчитывает оптимальные параметры кодирования. Все обрабатывается локально, без загрузок в облако.

Инструмент построен на FFmpeg и автоматически подбирает битрейт, разрешение, FPS и качество аудио, стараясь сохранить максимум качества при нужном размере.

Поддерживает пакетную обработку в одну директорию, ограничение FPS для баланса четкости и плавности, а также кодеки H.264, HEVC, AV1 и VP9.

Если часто приходится ужимать видео под конкретный лимит и не хочется возиться с настройками или онлайн-сервисами, стоит попробовать.

📁 Language: #Python 94.2%

⭐️ Stars: 323

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64🔥2
Promptomatix

При работе с prompt’ами больше всего выматывает не придумывание, а бесконечный перебор вариантов. Поменял одно слово — результат стал хуже, добавил фразу — логика поехала. В итоге куча времени уходит на ручной тюнинг и пробу-ошибку.

Случайно на GitHub попался Promptomatix — фреймворк от Salesforce AI Research, выложенный в open source. Его цель как раз в том, чтобы избавиться от этой ручной возни с оптимизацией prompt’ов.

Он анализирует требования задачи, автоматически генерирует тренировочные данные и на основе фидбэка итеративно правит prompt, пока не выйдет на лучший результат.

Поддерживает несколько провайдеров моделей, включая OpenAI и Anthropic. Есть и CLI, и API для интеграции в проекты.

Также есть подробные Jupyter-туториалы — от базового использования до продвинутой кастомизации. Можно начать быстро через командную строку, а потом углубиться.

Если ты разрабатываешь LLM-приложения или уже устал вручную полировать prompt’ы, этот автоматизированный подход точно стоит попробовать.

📁 Language: #Python 99.5%

⭐️ Stars: 714

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍3🔥2😁1
XL Converter

При работе с фотками и изображениями постоянно всплывают две боли: файлы слишком тяжёлые и формат не поддерживается. Найти инструмент, который умеет сжимать без потери качества, на практике не так просто.

На GitHub как раз попался открытый проект XL Converter. В одном интерфейсе он закрывает конвертацию между разными форматами изображений.

Поддерживается взаимное преобразование между JPEG XL, AVIF, WebP, JPEG, PNG и другими форматами. Есть параллельная обработка, так что можно гонять сразу пачку файлов.

Также есть поддержка lossless-транскодинга JPEG: размер JPEG-файлов уменьшается примерно на 16–22% без потери качества, и процесс полностью обратимый.

Помимо конвертации форматов, есть ресайз изображений. Можно менять размер по разрешению, в процентах или по минимальной стороне.

Доступны сборки под Windows и Linux, всё работает из коробки. Если часто приходится массово перегонять картинки между форматами, инструмент точно стоит посмотреть.

📁 Language: #Python 94.6%

⭐️ Stars: 399

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
5
This media is not supported in your browser
VIEW IN TELEGRAM
Агентный RAG для чайников

Если хочешь собрать рабочую RAG-систему, то большинство гайдов в интернете заканчиваются на самом базовом "retrieval + generation". Как только появляется многотуровый диалог или более сложная логика, качество ответов часто становится просто ужасным.

На GitHub нашел проект Агентный RAG для чайников. Не ведись на слово "для чайников" в названии: по сути это продакшен-уровневое решение agentic RAG, собранное на LangGraph.

Там добавлены память диалога и иерархическая индексация: сначала точный поиск по маленьким чанкам, потом подтягивание больших чанков как полноценного контекста. Это неплохо лечит проблему, когда модель выдирает фразы без нормального окружения.

Поддерживается параллельная работа нескольких агентов для разруливания сложных запросов. Если инструкция расплывчатая, система может сама переспросить, чтобы уточнить намерение, вместо того чтобы уверенно галлюцинировать.

Еще внутри есть Gradio-интерфейс: управление документами, сохранение диалогов, ручное вмешательство (human-in-the-loop) и прочее. Плюс дается полный гайд по конвертации PDF в Markdown, с инструментами и сравнением вариантов.

Есть быстрый деплой через Docker и подробные Notebook-уроки, так что локально поднять все довольно легко. Если хочешь апгрейднуть базовый RAG до уровня продакшена или ищешь кастомизируемую схему умного поиска, проект стоит попробовать.

📁 Language: #Python 32.1%

⭐️ Stars: 1.2k

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍3
PDF Document Layout Analysis

Когда возишься с PDF и нужно точно определить, где заголовок, где таблица, где картинка, большинство инструментов либо мажут мимо, либо перегружены до абсурда.

Нашёл на GitHub проект PDF Document Layout Analysis. Это опенсорс, заточенный под разбор сложной структуры документов.

Он различает больше 11 типов элементов: заголовки, основной текст, таблицы, формулы, изображения и так далее. Плюс сам выстраивает корректный порядок чтения.

Есть экспорт в Markdown и HTML. OCR завёрнут через Tesseract, из коробки поддерживается 150+ языков.

Помимо этого, встроен автоперевод — можно выгнать документ сразу в другую языковую версию, сохранив формат и структуру.

Для работы есть визуальный Web UI, а ещё доступен REST API. Весь стек можно поднять локально через Docker одной командой.

📁 Language: #Python 89.2%

⭐️ Stars: 1k

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7👍2
awesome-ai-memory

При разработке AI-агентов самая больная тема это как дать большой модели нормальную "долгую память". На рынке куча вариантов: векторные БД, графовые БД, разные memory-фреймворки. От выбора быстро начинает кипеть голова.

На GitHub попался проект awesome-ai-memory. Это по сути панорама инструментов вокруг AI-памяти, собранная в одном месте.

Инструменты четко разделены на open-source и closed-source, удобно сразу отсеять то, что не хочется тащить в прод по причинам контроля и лицензий.

Есть сравнение по базовой архитектуре хранилища: Graph, Vector или гибрид (и то и другое). Это прям в точку, потому что обычно выбор упирается именно в это.

Дальше все разложено по категориям: memory-компоненты, dev-фреймворки, оптимизаторы и базовые стореджи, чтобы искать не по названию, а по задаче.

Список оформлен таблицей: видно ключевые различия между популярными проектами вроде Cognee, Mem0, Zep и т.д., чтобы не блуждать в выборе инфраструктуры.

Если ты сейчас строишь AI-приложение или копаешь RAG-архитектуру, эту штуку реально стоит сохранить как шпаргалку.

📁 Language: #Python 100%

⭐️ Stars: 434

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍64💊1
voicelive-api-salescoach

В продажах часто одно и то же: читаешь теорию, смотришь кейсы, а в реальной беседе с клиентом теряешься. Нет нормальной практики с живым диалогом, где можно набить руку.

На GitHub попался проект Voice Live API Sales Coach. Это open-source инструмент, который через голосовой диалог на базе ИИ симулирует реальные продажи и дает возможность тренироваться хоть каждый день.

Сделан на Azure Real-Time Speech API в связке с GPT-4o. Выбираешь индустрию, заходишь в сцену — и виртуальный клиент говорит как живой. Ты отвечаешь голосом, он сразу реагирует, без задержек и роботских интонаций.

После диалога система выдает разбор: тон, содержание, насколько правильно вытащил потребности, как справился с возражениями, где провалился по аргументации. Плюс проверяет четкость речи и дает баллы по метрикам.

Есть кнопка для деплоя прямо в Azure, но и локально поднять можно, если настроить ключи и нужные сервисы. Получается удобный тренажер для тех, кто хочет не просто «знать теорию», а уметь разговаривать с клиентом уверенно.

📁 Language: #Python 57.3%

⭐️ Stars: 80

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥5
ClickClickClick

Хочется, чтобы телефон или комп сам разбирался с рутиной, но обычно для этого надо городить скрипты и ковыряться в автоматизации. Для новичков порог высокий.

На GitHub наткнулся на проект ClickClickClick — опенсорс, который использует визуальные возможности LLM и позволяет автоматизировать управление Android и macOS.

Не нужно выписывать жёсткие координаты и клики. Просто говоришь обычным языком, типа: «открой Gmail и отправь письмо» или «найди автобусные остановки на карте», и ИИ сам проходит интерфейс.

Поддерживает OpenAI, Claude, Gemini и локальные модели через Ollama. Конфиденциальность под контролем, достаточно настроить ADB и можно управлять андроид-устройством.

Подходит, если хочется попробовать, как ИИ может “по кликам” проходить приложения, гонять тесты или автоматизировать бытовую рутину. Нормальная экспериментальная база для таких задач.

📁 Language: #Python 100.0%

⭐️ Stars: 563

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍1
LifeTrace

Каждый день работаешь за компом, используешь кучу софта, делаешь миллион задач, а через пару дней уже не вспомнишь, куда ушло время и что именно делал. Не говоря уже о деталях за несколько месяцев.

На GitHub попался проект LifeTrace — open source тулза, которая с помощью автоскриншотов, OCR и умного поиска фиксирует и восстанавливает твою активность.

Она по расписанию делает скриншоты экрана, вытаскивает текст через OCR, группирует всё по контексту в “события” и строит график распределения времени за 24 часа.

Кроме фиксации, есть поиск — векторный и мультимодальный. Можно быстро найти нужный кусок информации за конкретный день или момент.

Разворачивается через Docker или обычную установку, работает на Windows и macOS.

Если хочется вести свой рабочий “след”, отслеживать, чем реально занят, или разбирать, куда утекает время — инструмент стоит попробовать.

📁 Language: #Python 53.9%

⭐️ Stars: 1.5k

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
6🔥4👍1🌚1
Guardian

При проведении пентеста или security-оценки больше всего бесит не нехватка инструментов, а их разрозненность.

Приходится постоянно прыгать между Nmap, SQLMap, Nuclei, плюс вручную разбирать тонны результатов сканирования. Эффективность падает в ноль.

Недавно на GitHub попался open-source фреймворк Guardian с довольно интересной идеей: к классическим security-инструментам прикрутили AI-мозг.

По сути, это автоматизированная платформа для пентеста на базе Google Gemini.

Она объединяет Nmap, Nuclei, SQLMap и ещё около 15 популярных security-тулзов, а AI занимается интеллектуальным планированием атак.

Фреймворк автоматически проходит весь пайплайн — от порт-сканирования и веб-разведки до валидации уязвимостей, и даже умеет динамически менять стратегию тестирования на основе полученных результатов.

Есть Docker-образ из коробки со всеми предустановленными инструментами, также поддерживается локальный деплой с кастомной конфигурацией. Потребуется только API-ключ Google Gemini.

📁 Language: #Python 97.8%

⭐️ Stars: 219

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥42👍2
llm-madness

Обучение больших языковых моделей — это обычно целая цепочка из настройки окружения, подбора гиперпараметров и трекинга экспериментов. Процесс громоздкий, легко накосячить, а быстро проверить идею или разобраться в принципах работы — то ещё удовольствие.

И тут как раз попался open-source проект llm-madness на GitHub. Это лёгкий end-to-end пайплайн для обучения LLM с визуальным интерфейсом.

Он закрывает весь цикл: от сборки токенизатора и подготовки датасета до обучения GPT-модели. Плюс через веб-интерфейс можно в реальном времени смотреть, как меняется loss и какие сэмплы генерирует модель.

Внутри — реализация Transformer в GPT-стиле с возможностью кастомизировать архитектуру: количество слоёв, число attention-голов, размер эмбеддингов и т.д. Есть живые графики лосса, генерация примеров и визуализация attention.

Также встроено обучение BPE-токенизатора, что позволяет подгонять токенизацию под конкретный домен — код, математику, медицину и прочие специализированные корпуса.

Если хочется быстро проверить идеи по архитектуре модели или глубже понять, как устроен Transformer изнутри, без поднятия тяжёлого тренировочного стека — проект точно стоит посмотреть.

📁 Language: #Python 50.2%

⭐️ Stars: 88

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍2
Fincept Terminal

Занимаясь финансовым анализом или инвестиционными исследованиями, больше всего напрягает не нехватка данных, а то, что они размазаны по разным платформам, а инструменты анализа живут каждый сам по себе. Связать данные по цепочкам поставок с инвестиционным портфелем и нормально это проанализировать — та еще боль.

Недавно на GitHub наткнулся на Fincept Terminal — open-source платформу для финансового анализа, которая объединяет инструменты уровня CFA, ИИ-автоматизацию и кросс-доменную интеграцию данных.

Внутри есть полноценные аналитические модули по программе CFA: оптимизация портфеля, оценка по DCF, ценообразование опционов и другие профессиональные инструменты. Плюс интегрированы аналитические стили более чем 20 инвестиционных мастеров — стратегии Баффета, Далио, Сороса можно вызывать напрямую.

Самое интересное — кросс-доменная работа с данными. Поддерживается более 100 коннекторов к источникам данных: можно связать данные по морским перевозкам с прогнозом ВВП и затем спроецировать это на позиции по акциям, либо напрямую связать геополитические события с валютной волатильностью и стратегиями хеджирования через опционы, собирая собственные аналитические метрики.

Также есть визуальный редактор рабочих процессов: аналитические пайплайны собираются перетаскиванием нод. В том числе поддерживается 3D-глобус с отслеживанием в реальном времени маршрутов судов, самолетов и спутников.

Если ты ищешь инструмент для финансовых исследований без жестких ограничений по данным, с возможностью свободно комбинировать логику анализа, или если тебя уже достал классический формат финансовых терминалов с их «островками данных», на этот проект точно стоит посмотреть.

📁 Language: #Python 53.0%

⭐️ Stars: 992

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍6
Maigret

Хочешь по одному юзернейму собрать след человека по сети, но руками лезть на каждый сервис долго, муторно и все равно что-то упустишь.

На GitHub нашел Maigret — опенсорс инструмент для OSINT по юзернеймам. Вводишь имя, а он сам пробегается по 3000+ сервисам и ищет совпадающие аккаунты.

Основан на проекте Sherlock, но прокачан: не просто находит аккаунт, а еще парсит профиль, вытаскивает инфу, и если по дороге всплывают альтернативные никнеймы, может рекурсивно пройтись по ним и связать цепочку.

Можно фильтровать по тегам — например, искать только фотосервисы или сайты конкретной страны. Есть обработка капч и ограничений доступа. Итоговый отчёт можно выгрузить в HTML, PDF, mind map и другие форматы, плюс есть веб-интерфейс.

Варианты использования широкие: standalone для Windows, Docker образ, Telegram-бот, или можно запускать в облаке без установки на локалку.

Если тебе близки security research, digital forensics или OSINT, инструмент точно стоит держать под рукой.

📁 Language: #Python 66.1%

⭐️ Stars: 18.6k

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍61
icloud_photos_downloader

Хочется слить на локальный диск пару тысяч фоток из iCloud, а через веб или приложение это только руками, муторно и долго.

На GitHub случайно попался опенсорсный icloud_photos_downloader — консольный тул, который позволяет скриптом выкачать весь iCloud Photo Library на локалку.

Написан на Python, логинитcя с двухфакторкой, и одной простой командой забирает фотки и видео пачками в выбранную директорию.

Умеет докачивать с места остановки, уже скачанные файлы пропускает, можно фильтровать по дате, альбомам и даже по альбомам из face recognition.

После скачивания файлы можно раскидать по год/месяц/день и сохранить оригинальные метаданные.

Если прикрутить cron или другой планировщик, можно получить автоматический локальный бэкап из iCloud. Есть и Docker-образ, подойдет для долгой работы на сервере.

📁 Language: #Python 93.7%

⭐️ Stars: 9.7k

➡️ Cсылка на GitHub

📱 @git_developer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6