Generative AI
22.9K subscribers
475 photos
2 videos
80 files
247 links
โœ… Welcome to Generative AI
๐Ÿ‘จโ€๐Ÿ’ป Join us to understand and use the tech
๐Ÿ‘ฉโ€๐Ÿ’ป Learn how to use Open AI & Chatgpt
๐Ÿค– The REAL No.1 AI Community

Admin: @coderfun
Download Telegram
Step 1: Open ChatGPT
Step 2: Upload your Logo
Step 3: write down the Prompt given below

Prompt:
Create a highly detailed, textured logo for [Brand Name], made of thick yarn or wool. Each section of the logo should be in a different vibrant color (matching the reference image provided). The yarn should have a knitted texture with clearly visible fibers, giving a soft, dynamic 3D appearance. Ensure the logo has a three- dimensional effect with shading that makes it look like a knitted piece of fabric. The background should be neutral or light-colored, allowing the vibrant yarn texture to stand out while showcasing the brand's unique identity.
โค4
Generative AI Mindmap
โค4
๐—™๐—ฟ๐—ฒ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฅ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€: ๐Ÿฑ ๐—ฆ๐˜๐—ฒ๐—ฝ๐˜€ ๐˜๐—ผ ๐—ฆ๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜†๐Ÿ˜

Want to break into Data Science but donโ€™t know where to begin?๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

Youโ€™re not alone. Data Science is one of the most in-demand fields today, but with so many courses online, it can feel overwhelming.๐Ÿ’ซ๐Ÿ“ฒ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3SU5FJ0

No prior experience needed!โœ…๏ธ
โค2
9 ESSENTIAL MACHINE LEARNING ALGORITHMS
โค3
๐—ง๐—ผ๐—ฝ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ - ๐—–๐—ฟ๐—ฎ๐—ฐ๐—ธ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ก๐—ฒ๐˜…๐˜ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„๐Ÿ˜

๐—ฆ๐—ค๐—Ÿ:- https://pdlink.in/3SMHxaZ

๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป :- https://pdlink.in/3FJhizk

๐—๐—ฎ๐˜ƒ๐—ฎ  :- https://pdlink.in/4dWkAMf

๐——๐—ฆ๐—” :- https://pdlink.in/3FsDA8j

 ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ :- https://pdlink.in/4jLOJ2a

๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ ๐—•๐—œ :-  https://pdlink.in/4dFem3o

๐—–๐—ผ๐—ฑ๐—ถ๐—ป๐—ด :- https://pdlink.in/3F00oMw

Get Your Dream Tech Job In Your Dream Company๐Ÿ’ซ
Python Libraries for Generative AI
โค2
Machine Learning isn't easy!

Itโ€™s the field that powers intelligent systems and predictive models.

To truly master Machine Learning, focus on these key areas:

0. Understanding the Basics of Algorithms: Learn about linear regression, decision trees, and k-nearest neighbors to build a solid foundation.


1. Mastering Data Preprocessing: Clean, normalize, and handle missing data to prepare your datasets for training.


2. Learning Supervised Learning Techniques: Dive deep into classification and regression models, such as SVMs, random forests, and logistic regression.


3. Exploring Unsupervised Learning: Understand clustering techniques (K-means, hierarchical) and dimensionality reduction (PCA, t-SNE).


4. Mastering Model Evaluation: Use techniques like cross-validation, confusion matrices, ROC curves, and F1 scores to assess model performance.


5. Understanding Overfitting and Underfitting: Learn how to balance bias and variance to build robust models.


6. Optimizing Hyperparameters: Use grid search, random search, and Bayesian optimization to fine-tune your models for better performance.


7. Diving into Neural Networks and Deep Learning: Explore deep learning with frameworks like TensorFlow and PyTorch to create advanced models like CNNs and RNNs.


8. Working with Natural Language Processing (NLP): Master text data, sentiment analysis, and techniques like word embeddings and transformers.


9. Staying Updated with New Techniques: Machine learning evolves rapidlyโ€”keep up with emerging models, techniques, and research.



Machine learning is about learning from data and improving models over time.

๐Ÿ’ก Embrace the challenges of building algorithms, experimenting with data, and solving complex problems.

โณ With time, practice, and persistence, youโ€™ll develop the expertise to create systems that learn, predict, and adapt.

Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.me/datasciencefun

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š

#datascience
โค2
Forwarded from Artificial Intelligence
๐Ÿณ ๐—•๐—ฒ๐˜€๐˜ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป & ๐—ฃ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ฐ๐—ฒ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐—ผ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€๐Ÿ˜

๐Ÿ’ป You donโ€™t need to spend a rupee to master Python!๐Ÿ

Whether youโ€™re an aspiring Data Analyst, Developer, or Tech Enthusiast, these 7 completely free platforms help you go from zero to confident coder๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4l5XXY2

Enjoy Learning โœ…๏ธ
โค1
7 Must-Know Concepts in Artificial Intelligence (2025 Edition)

โœ… Natural Language Processing (NLP) โ€“ Powering chatbots, translators, and text summarizers like ChatGPT

โœ… Computer Vision โ€“ Enabling machines to โ€œseeโ€ through image classification, object detection, and facial recognition

โœ… Reinforcement Learning โ€“ Training agents to make decisions through rewards and penalties (used in robotics & gaming)

โœ… Deep Learning โ€“ Neural networks that learn from vast amounts of data (CNNs, RNNs, Transformers)

โœ… Prompt Engineering โ€“ Crafting effective prompts to guide AI models like GPT-4 and Claude

โœ… Explainable AI (XAI) โ€“ Making AI decisions interpretable and transparent for trust and accountability

โœ… Generative AI โ€“ Creating text, images, code, music, and more (DALLยทE, Sora, Midjourney, etc.)

React if you're exploring the mind-blowing world of AI!

Free AI Resources: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
โค2
๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐Ÿ˜

Dreaming of a career in Data Analytics but donโ€™t know where to begin?

 The Career Essentials in Data Analysis program by Microsoft and LinkedIn is a 100% FREE learning path designed to equip you with real-world skills and industry-recognized certification.

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4kPowBj

Enroll For FREE & Get Certified โœ…๏ธ
Tools & Languages in AI & Machine Learning

Want to build the next ChatGPT or a self-driving car algorithm? You need to master the right tools. Today, weโ€™ll break down the tech stack that powers AI innovation.

1. Python โ€“ The Heartbeat of AI

Python is the most widely used programming language in AI. Itโ€™s simple, versatile, and backed by thousands of libraries.
Why it matters: Readable syntax, massive community, and endless ML/AI resources.


2. NumPy & Pandas โ€“ Data Handling Pros

Before building models, you clean and understand data. These libraries make it easy.

NumPy: Fast matrix computations

Pandas: Smart data manipulation and analysis


3. Scikit-learn โ€“ For Traditional ML

Want to build a model to predict house prices or classify emails as spam? Scikit-learn is perfect for regression, classification, clustering, and more.


4. TensorFlow & PyTorch โ€“ Deep Learning Giants

These are the two leading frameworks used for building neural networks, CNNs, RNNs, LLMs, and more.

TensorFlow: Backed by Google, highly scalable

PyTorch: Preferred in research for its flexibility and Pythonic style


5. Keras โ€“ The Friendly Deep Learning API

Built on top of TensorFlow, it allows quick prototyping of deep learning models with minimal code.


6. OpenCV โ€“ For Computer Vision

Want to build face recognition or object detection apps? OpenCV is your go-to for processing images and video.


7. NLTK & spaCy โ€“ NLP Toolkits

These tools help machines understand human language. Youโ€™ll use them to build chatbots, summarize text, or analyze sentiment.


8. Jupyter Notebook โ€“ Your AI Playground

Interactive notebooks where you can write code, visualize data, and explain logic in one place. Great for experimentation and demos.


9. Google Colab โ€“ Free GPU-Powered Coding

Run your AI code with GPUs for free in the cloud โ€” ideal for training ML models without any setup.


10. Hugging Face โ€“ Pre-trained AI Models

Use models like BERT, GPT, and more with just a few lines of code. No need to train everything from scratch!


To build smart AI solutions, you donโ€™t need 100 tools โ€” just the right ones. Start with Python, explore scikit-learn, then dive into TensorFlow or PyTorch based on your goal.

Artificial intelligence learning series: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
โค1
Core data science concepts you should know:

๐Ÿ”ข 1. Statistics & Probability

Descriptive statistics: Mean, median, mode, standard deviation, variance

Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA

Probability distributions: Normal, Binomial, Poisson, Uniform

Bayes' Theorem

Central Limit Theorem


๐Ÿ“Š 2. Data Wrangling & Cleaning

Handling missing values

Outlier detection and treatment

Data transformation (scaling, encoding, normalization)

Feature engineering

Dealing with imbalanced data


๐Ÿ“ˆ 3. Exploratory Data Analysis (EDA)

Univariate, bivariate, and multivariate analysis

Correlation and covariance

Data visualization tools: Matplotlib, Seaborn, Plotly

Insights generation through visual storytelling


๐Ÿค– 4. Machine Learning Fundamentals

Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN

Unsupervised Learning: K-means, hierarchical clustering, PCA

Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC

Cross-validation and overfitting/underfitting

Bias-variance tradeoff


๐Ÿง  5. Deep Learning (Basics)

Neural networks: Perceptron, MLP

Activation functions (ReLU, Sigmoid, Tanh)

Backpropagation

Gradient descent and learning rate

CNNs and RNNs (intro level)


๐Ÿ—ƒ๏ธ 6. Data Structures & Algorithms (DSA)

Arrays, lists, dictionaries, sets

Sorting and searching algorithms

Time and space complexity (Big-O notation)

Common problems: string manipulation, matrix operations, recursion


๐Ÿ’พ 7. SQL & Databases

SELECT, WHERE, GROUP BY, HAVING

JOINS (inner, left, right, full)

Subqueries and CTEs

Window functions

Indexing and normalization


๐Ÿ“ฆ 8. Tools & Libraries

Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch

R: dplyr, ggplot2, caret

Jupyter Notebooks for experimentation

Git and GitHub for version control


๐Ÿงช 9. A/B Testing & Experimentation

Control vs. treatment group

Hypothesis formulation

Significance level, p-value interpretation

Power analysis


๐ŸŒ 10. Business Acumen & Storytelling

Translating data insights into business value

Crafting narratives with data

Building dashboards (Power BI, Tableau)

Knowing KPIs and business metrics

React โค๏ธ for more
โค1
Forwarded from Artificial Intelligence
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—”๐—œ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ž๐—ถ๐—ฐ๐—ธ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

๐ŸŽ“ You donโ€™t need to break the bank to break into AI!๐Ÿชฉ

If youโ€™ve been searching for beginner-friendly, certified AI learningโ€”Google Cloud has you covered๐Ÿค๐Ÿ‘จโ€๐Ÿ’ป

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3SZQRIU

๐Ÿ“All taught by industry-leading instructorsโœ…๏ธ
๐Ÿ‘3โค1