Generative AI
22.9K subscribers
475 photos
2 videos
80 files
247 links
โœ… Welcome to Generative AI
๐Ÿ‘จโ€๐Ÿ’ป Join us to understand and use the tech
๐Ÿ‘ฉโ€๐Ÿ’ป Learn how to use Open AI & Chatgpt
๐Ÿค– The REAL No.1 AI Community

Admin: @coderfun
Download Telegram
Build Machine Learning Projects in Python โœ…
โค2
Forwarded from Artificial Intelligence
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ž๐—ฎ๐—ด๐—ด๐—น๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—๐˜‚๐—บ๐—ฝ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

Want to break into Data Science but not sure where to start?๐Ÿš€

These free Kaggle micro-courses are the perfect launchpad โ€” beginner-friendly, self-paced, and yes, they come with certifications!๐Ÿ‘จโ€๐ŸŽ“๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4l164FN

No subscription. No hidden fees. Just pure learning from a trusted platformโœ…๏ธ
โค1
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ + ๐—Ÿ๐—ถ๐—ป๐—ธ๐—ฒ๐—ฑ๐—œ๐—ป ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—˜๐˜€๐˜€๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ๐Ÿ˜

Ready to upgrade your career without spending a dime?โœจ๏ธ

From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!๐Ÿ“ฒ๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/469RCGK

Designed to equip you with in-demand skills and industry-recognised certifications๐Ÿ“œโœ…๏ธ
โค1
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ ๐——๐—ฎ๐˜๐—ฎ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ž๐—ถ๐—ฐ๐—ธ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ & ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜†๐Ÿ˜

Want to break into Data Analytics or Data Scienceโ€”but donโ€™t know where to begin?๐Ÿš€

Harvard University offers 5 completely free online courses that will build your foundation in Python, statistics, machine learning, and data visualization โ€” no prior experience or degree required!๐Ÿ‘จโ€๐ŸŽ“๐Ÿ’ซ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3T3ZhPu

These Harvard-certified courses will boost your resume, LinkedIn profile, and skillsโœ…๏ธ
โค1
Machine Learning โ€“ Essential Concepts ๐Ÿš€

1๏ธโƒฃ Types of Machine Learning

Supervised Learning โ€“ Uses labeled data to train models.

Examples: Linear Regression, Decision Trees, Random Forest, SVM


Unsupervised Learning โ€“ Identifies patterns in unlabeled data.

Examples: Clustering (K-Means, DBSCAN), PCA


Reinforcement Learning โ€“ Models learn through rewards and penalties.

Examples: Q-Learning, Deep Q Networks



2๏ธโƒฃ Key Algorithms

Regression โ€“ Predicts continuous values (Linear Regression, Ridge, Lasso).

Classification โ€“ Categorizes data into classes (Logistic Regression, Decision Tree, SVM, Naรฏve Bayes).

Clustering โ€“ Groups similar data points (K-Means, Hierarchical Clustering, DBSCAN).

Dimensionality Reduction โ€“ Reduces the number of features (PCA, t-SNE, LDA).


3๏ธโƒฃ Model Training & Evaluation

Train-Test Split โ€“ Dividing data into training and testing sets.

Cross-Validation โ€“ Splitting data multiple times for better accuracy.

Metrics โ€“ Evaluating models with RMSE, Accuracy, Precision, Recall, F1-Score, ROC-AUC.


4๏ธโƒฃ Feature Engineering

Handling missing data (mean imputation, dropna()).

Encoding categorical variables (One-Hot Encoding, Label Encoding).

Feature Scaling (Normalization, Standardization).


5๏ธโƒฃ Overfitting & Underfitting

Overfitting โ€“ Model learns noise, performs well on training but poorly on test data.

Underfitting โ€“ Model is too simple and fails to capture patterns.

Solution: Regularization (L1, L2), Hyperparameter Tuning.


6๏ธโƒฃ Ensemble Learning

Combining multiple models to improve performance.

Bagging (Random Forest)

Boosting (XGBoost, Gradient Boosting, AdaBoost)



7๏ธโƒฃ Deep Learning Basics

Neural Networks (ANN, CNN, RNN).

Activation Functions (ReLU, Sigmoid, Tanh).

Backpropagation & Gradient Descent.


8๏ธโƒฃ Model Deployment

Deploy models using Flask, FastAPI, or Streamlit.

Model versioning with MLflow.

Cloud deployment (AWS SageMaker, Google Vertex AI).

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
โค2
Forwarded from Artificial Intelligence
๐Ÿฑ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ณ๐—ผ๐—ฟ ๐—•๐—ฒ๐—ด๐—ถ๐—ป๐—ป๐—ฒ๐—ฟ๐˜€ ๐—ฏ๐˜† ๐—›๐—ฎ๐—ฟ๐˜ƒ๐—ฎ๐—ฟ๐—ฑ, ๐—œ๐—•๐— , ๐—จ๐—ฑ๐—ฎ๐—ฐ๐—ถ๐˜๐˜† & ๐— ๐—ผ๐—ฟ๐—ฒ๐Ÿ˜

Looking to learn Python from scratchโ€”without spending a rupee? ๐Ÿ’ป

Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion๐Ÿ”ฅ๐Ÿ‘จโ€๐ŸŽ“

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3HNeyBQ

Kickstart your careerโœ…๏ธ
Let's now understand Data Science Roadmap in detail:

1. Math & Statistics (Foundation Layer)
This is the backbone of data science. Strong intuition here helps with algorithms, ML, and interpreting results.

Key Topics:

Linear Algebra: Vectors, matrices, matrix operations

Calculus: Derivatives, gradients (for optimization)

Probability: Bayes theorem, probability distributions

Statistics: Mean, median, mode, standard deviation, hypothesis testing, confidence intervals

Inferential Statistics: p-values, t-tests, ANOVA


Resources:

Khan Academy (Math & Stats)

"Think Stats" book

YouTube (StatQuest with Josh Starmer)


2. Python or R (Pick One for Analysis)
These are your main tools. Python is more popular in industry; R is strong in academia.

For Python Learn:

Variables, loops, functions, list comprehension

Libraries: NumPy, Pandas, Matplotlib, Seaborn


For R Learn:

Vectors, data frames, ggplot2, dplyr, tidyr


Goal: Be comfortable working with data, writing clean code, and doing basic analysis.

3. Data Wrangling (Data Cleaning & Manipulation)
Real-world data is messy. Cleaning and structuring it is essential.

What to Learn:

Handling missing values

Removing duplicates

String operations

Date and time operations

Merging and joining datasets

Reshaping data (pivot, melt)


Tools:

Python: Pandas

R: dplyr, tidyr


Mini Projects: Clean a messy CSV or scrape and structure web data.

4. Data Visualization (Telling the Story)
This is about showing insights visually for business users or stakeholders.

In Python:

Matplotlib, Seaborn, Plotly


In R:

ggplot2, plotly


Learn To:

Create bar plots, histograms, scatter plots, box plots

Design dashboards (can explore Power BI or Tableau)

Use color and layout to enhance clarity


5. Machine Learning (ML)
Now the real fun begins! Automate predictions and classifications.

Topics:

Supervised Learning: Linear Regression, Logistic Regression, Decision Trees, Random Forests, SVM

Unsupervised Learning: Clustering (K-means), PCA

Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AUC

Cross-validation, Hyperparameter tuning


Libraries:

scikit-learn, xgboost


Practice On:

Kaggle datasets, Titanic survival, House price prediction


6. Deep Learning & NLP (Advanced Level)
Push your skills to the next level. Essential for AI, image, and text-based tasks.

Deep Learning:

Neural Networks, CNNs, RNNs

Frameworks: TensorFlow, Keras, PyTorch


NLP (Natural Language Processing):

Text preprocessing (tokenization, stemming, lemmatization)

TF-IDF, Word Embeddings

Sentiment Analysis, Topic Modeling

Transformers (BERT, GPT, etc.)


Projects:

Sentiment analysis from Twitter data

Image classifier using CNN


7. Projects (Build Your Portfolio)
Apply everything you've learned to real-world datasets.

Types of Projects:

EDA + ML project on a domain (finance, health, sports)

End-to-end ML pipeline

Deep Learning project (image or text)

Build a dashboard with your insights

Collaborate on GitHub, contribute to open-source


Tips:

Host projects on GitHub

Write about them on Medium, LinkedIn, or personal blog


8. โœ… Apply for Jobs (You're Ready!)
Now, you're prepared to apply with confidence.

Steps:

Prepare your resume tailored for DS roles

Sharpen interview skills (SQL, Python, case studies)

Practice on LeetCode, InterviewBit

Network on LinkedIn, attend meetups

Apply for internships or entry-level DS/DA roles


Keep learning and adapting. Data Science is vast and fast-movingโ€”stay updated via newsletters, GitHub, and communities like Kaggle or Reddit.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
โค1
๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ & ๐—ฆ๐˜๐—ฎ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฑ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—ช๐—ถ๐—น๐—น ๐—”๐—ฐ๐˜๐˜‚๐—ฎ๐—น๐—น๐˜† ๐—จ๐—ฝ๐—ด๐—ฟ๐—ฎ๐—ฑ๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ๐Ÿ˜

I failed my first data interview โ€” and hereโ€™s why:โฌ‡๏ธ

โŒ No structured learning
โŒ No real projects
โŒ Just random YouTube tutorials and half-read blogs

If this sounds like you, donโ€™t repeat my mistakeโœจ๏ธ
Recruiters want proof of skills, not just buzzwords๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4ka1ZOl

All The Best ๐ŸŽŠ
โค1
Complete Roadmap to learn Data Science

1. Foundational Knowledge

Mathematics and Statistics

- Linear Algebra: Understand vectors, matrices, and tensor operations.
- Calculus: Learn about derivatives, integrals, and optimization techniques.
- Probability: Study probability distributions, Bayes' theorem, and expected values.
- Statistics: Focus on descriptive statistics, hypothesis testing, regression, and statistical significance.

Programming

- Python: Start with basic syntax, data structures, and OOP concepts. Libraries to learn: NumPy, pandas, matplotlib, seaborn.
- R: Get familiar with basic syntax and data manipulation (optional but useful).
- SQL: Understand database querying, joins, aggregations, and subqueries.

2. Core Data Science Concepts

Data Wrangling and Preprocessing

- Cleaning and preparing data for analysis.
- Handling missing data, outliers, and inconsistencies.
- Feature engineering and selection.

Data Visualization

- Tools: Matplotlib, seaborn, Plotly.
- Concepts: Types of plots, storytelling with data, interactive visualizations.

Machine Learning

- Supervised Learning: Linear regression, logistic regression, decision trees, random forests, support vector machines, k-nearest neighbors.
- Unsupervised Learning: K-means clustering, hierarchical clustering, PCA.
- Advanced Techniques: Ensemble methods, gradient boosting (XGBoost, LightGBM), neural networks.
- Model Evaluation: Train-test split, cross-validation, confusion matrix, ROC-AUC.


3. Advanced Topics

Deep Learning

- Frameworks: TensorFlow, Keras, PyTorch.
- Concepts: Neural networks, CNNs, RNNs, LSTMs, GANs.

Natural Language Processing (NLP)

- Basics: Text preprocessing, tokenization, stemming, lemmatization.
- Advanced: Sentiment analysis, topic modeling, word embeddings (Word2Vec, GloVe), transformers (BERT, GPT).

Big Data Technologies

- Frameworks: Hadoop, Spark.
- Databases: NoSQL databases (MongoDB, Cassandra).

4. Practical Experience

Projects

- Start with small datasets (Kaggle, UCI Machine Learning Repository).
- Progress to more complex projects involving real-world data.
- Work on end-to-end projects, from data collection to model deployment.

Competitions and Challenges

- Participate in Kaggle competitions.
- Engage in hackathons and coding challenges.

5. Soft Skills and Tools

Communication

- Learn to present findings clearly and concisely.
- Practice writing reports and creating dashboards (Tableau, Power BI).

Collaboration Tools

- Version Control: Git and GitHub.
- Project Management: JIRA, Trello.

6. Continuous Learning and Networking

Staying Updated

- Follow data science blogs, podcasts, and research papers.
- Join professional groups and forums (LinkedIn, Kaggle, Reddit, DataSimplifier).

7. Specialization

After gaining a broad understanding, you might want to specialize in areas such as:
- Data Engineering
- Business Analytics
- Computer Vision
- AI and Machine Learning Research

Hope this helps you ๐Ÿ˜Š
โค2
๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฆ๐—ค๐—Ÿ ๐—–๐—ฎ๐—ป ๐—•๐—ฒ ๐—™๐˜‚๐—ป! ๐Ÿฐ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฃ๐—น๐—ฎ๐˜๐—ณ๐—ผ๐—ฟ๐—บ๐˜€ ๐—ง๐—ต๐—ฎ๐˜ ๐—™๐—ฒ๐—ฒ๐—น ๐—Ÿ๐—ถ๐—ธ๐—ฒ ๐—ฎ ๐—š๐—ฎ๐—บ๐—ฒ๐Ÿ˜

Think SQL is all about dry syntax and boring tutorials? Think again.๐Ÿค”

These 4 gamified SQL websites turn learning into an adventure โ€” from solving murder mysteries to exploring virtual islands, youโ€™ll write real SQL queries while cracking clues and completing missions๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4nh6PMv

These platforms make SQL interactive, practical, and funโœ…๏ธ
๐Ÿ‘1