Generative AI
16.1K subscribers
220 photos
2 videos
42 files
107 links
โœ… Welcome to Generative AI
๐Ÿ‘จโ€๐Ÿ’ป Join us to understand and use the tech
๐Ÿ‘ฉโ€๐Ÿ’ป Learn how to use Open AI & Chatgpt
๐Ÿค– The REAL No.1 AI Community

Admin: @coderfun

Buy ads: https://telega.io/c/generativeai_gpt
Download Telegram
๐——๐—ฟ๐—ฒ๐—ฎ๐—บ ๐—๐—ผ๐—ฏ ๐—ฎ๐˜ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ? ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฐ ๐—™๐—ฅ๐—˜๐—˜ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ช๐—ถ๐—น๐—น ๐—›๐—ฒ๐—น๐—ฝ ๐—ฌ๐—ผ๐˜‚ ๐—š๐—ฒ๐˜ ๐—ง๐—ต๐—ฒ๐—ฟ๐—ฒ๐Ÿ˜

Dreaming of working at Google but not sure where to even begin?๐Ÿ“

Start with these FREE insider resourcesโ€”from building a resume that stands out to mastering the Google interview process. ๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/441GCKF

Because if someone else can do it, so can you. Why not you? Why not now?โœ…๏ธ
๐‡๐จ๐ฐ ๐ญ๐จ ๐๐ž๐ ๐ข๐ง ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐€๐ˆ ๐€๐ ๐ž๐ง๐ญ๐ฌ

๐Ÿ”น ๐‹๐ž๐ฏ๐ž๐ฅ ๐Ÿ: ๐…๐จ๐ฎ๐ง๐๐š๐ญ๐ข๐จ๐ง๐ฌ ๐จ๐Ÿ ๐†๐ž๐ง๐€๐ˆ ๐š๐ง๐ ๐‘๐€๐†

โ–ช๏ธ Introduction to Generative AI (GenAI): Understand the basics of Generative AI, its key use cases, and why it's important in modern AI development.

โ–ช๏ธ Large Language Models (LLMs): Learn the core principles of large-scale language models like GPT, LLaMA, or PaLM, focusing on their architecture and real-world applications.

โ–ช๏ธ Prompt Engineering Fundamentals: Explore how to design and refine prompts to achieve specific results from LLMs.

โ–ช๏ธ Data Handling and Processing: Gain insights into data cleaning, transformation, and preparation techniques crucial for AI-driven tasks.

๐Ÿ”น ๐‹๐ž๐ฏ๐ž๐ฅ ๐Ÿ: ๐€๐๐ฏ๐š๐ง๐œ๐ž๐ ๐‚๐จ๐ง๐œ๐ž๐ฉ๐ญ๐ฌ ๐ข๐ง ๐€๐ˆ ๐€๐ ๐ž๐ง๐ญ๐ฌ

โ–ช๏ธ API Integration for AI Models: Learn how to interact with AI models through APIs, making it easier to integrate them into various applications.

โ–ช๏ธ Understanding Retrieval-Augmented Generation (RAG): Discover how to enhance LLM performance by leveraging external data for more informed outputs.

โ–ช๏ธ Introduction to AI Agents: Get an overview of AI agentsโ€”autonomous entities that use AI to perform tasks or solve problems.

โ–ช๏ธ Agentic Frameworks: Explore popular tools like LangChain or OpenAIโ€™s API to build and manage AI agents.

โ–ช๏ธ Creating Simple AI Agents: Apply your foundational knowledge to construct a basic AI agent.

โ–ช๏ธ Agentic Workflow Overview: Understand how AI agents operate, focusing on planning, execution, and feedback loops.

โ–ช๏ธ Agentic Memory: Learn how agents retain context across interactions to improve performance and consistency.

โ–ช๏ธ Evaluating AI Agents: Explore methods for assessing and improving the performance of AI agents.

โ–ช๏ธ Multi-Agent Collaboration: Delve into how multiple agents can collaborate to solve complex problems efficiently.

โ–ช๏ธ Agentic RAG: Learn how to integrate Retrieval-Augmented Generation techniques within AI agents, enhancing their ability to use external data sources effectively.

Join for more AI Resources: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
Guys, this post is a must-read if you're even remotely curious about Generative AI & LLMs!

(Save it. Share it)

TOP 10 CONCEPTS YOU CAN'T IGNORE IN GENERATIVE AI

*1. Transformers โ€“ The Magic Behind GPT*

Forget the robots. These are the real transformers behind ChatGPT, Bard, Claude, etc. They process all the text at once (not step-by-step like RNNs) making them super smart and insanely fast.


*2. Self-Attention โ€“ The Eye of the Model*

This is how the model pays attention to every word while generating output. Like how you remember both the first and last scene of a movie โ€” self-attention lets AI weigh every wordโ€™s importance.


*3. Tokenization โ€“ Breaking It Down*

AI doesnโ€™t read like us. It breaks sentences into tokens (words or subwords). Even โ€œunbelievableโ€ gets split as โ€œun + believ + ableโ€ โ€“ thatโ€™s why LLMs handle language so smartly.


*4. Pretraining vs Fine-tuning*

Pretraining = Learn everything from scratch (like reading the entire internet).

Fine-tuning = Special coaching (like teaching GPT how to write code, summarize news, or mimic Shakespeare).



*5. Prompt Engineering โ€“ Talking to AI in Its Language*

A good prompt = better response. Itโ€™s like giving AI the right context or setting the stage properly. One word can change everything. Literally.


*6. Zero-shot, One-shot, Few-shot Learning*

Zero-shot: Model does it with no examples.

One/Few-shot: Model sees 1-2 examples and gets the hang of it.
Think of it like showing your friend how to do a dance step once, and boomโ€”they nail it.

Here you can find more explanation on prompting techniques
๐Ÿ‘‡๐Ÿ‘‡
https://whatsapp.com/channel/0029Vb6ISO1Fsn0kEemhE03b

*7. Diffusion Models โ€“ The Art Geniuses*

Behind tools like MidJourney and DALLยทE. They work by turning noise into beautyโ€”literally. First they add noise, then learn to reverse it to generate images.


*8. Reinforcement Learning from Human Feedback (RLHF)*

AI gets better with feedback. This is the secret sauce behind making models like ChatGPT behave well (and not go rogue).


*9. Hallucinations โ€“ AI's Confident Lies*

Yes, AI can make things up and sound 100% sure. Thatโ€™s called a hallucination. Knowing when itโ€™s real vs fake is key.


*10. Multimodal Models*

These are the models that donโ€™t just understand text but also images, videos, and audio. Think GPT-4 Vision or Gemini. The future is not just text โ€” itโ€™s everything together.


Generative AI is not just buzz. It's the backbone of a new era.

Credits: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
๐—ก๐—ผ ๐——๐—ฒ๐—ด๐—ฟ๐—ฒ๐—ฒ? ๐—ก๐—ผ ๐—ฃ๐—ฟ๐—ผ๐—ฏ๐—น๐—ฒ๐—บ. ๐—ง๐—ต๐—ฒ๐˜€๐—ฒ ๐Ÿฐ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐—–๐—ฎ๐—ป ๐—Ÿ๐—ฎ๐—ป๐—ฑ ๐—ฌ๐—ผ๐˜‚ ๐—ฎ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—๐—ผ๐—ฏ๐Ÿ˜

Dreaming of a career in data but donโ€™t have a degree? You donโ€™t need one. What you do need are the right skills๐Ÿ”—

These 4 free/affordable certifications can get you there. ๐Ÿ’ปโœจ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4ioaJ2p

Letโ€™s get you certified and hired!โœ…๏ธ
Generative AI
Guys, this post is a must-read if you're even remotely curious about Generative AI & LLMs! (Save it. Share it) TOP 10 CONCEPTS YOU CAN'T IGNORE IN GENERATIVE AI *1. Transformers โ€“ The Magic Behind GPT* Forget the robots. These are the real transformersโ€ฆ
Guys, here are 10 more next-level Generative AI terms thatโ€™ll make you sound like youโ€™ve been working at OpenAI (even if you're just exploring)!

TOP 10 ADVANCED TERMS IN GENERATIVE AI (Vol. 2)

*1. LoRA (Low-Rank Adaptation)*

Tiny brain upgrades for big models. LoRA lets you fine-tune huge LLMs without burning your laptop. Itโ€™s like customizing ChatGPT to think like you โ€” but in minutes.


*2. Embeddings*

This is how AI understands meaning. Every word or sentence becomes a string of numbers (vectors) in a high-dimensional space โ€” so "king" and "queen" end up close to each other.


*3. Context Window*

Itโ€™s like the memory span of the model. GPT-3.5 has ~4K tokens. GPT-4 Turbo? 128K tokens. More tokens = model remembers more of your prompt, better answers, fewer โ€œforgot what you saidโ€ moments.


*4. Retrieval-Augmented Generation (RAG)*

Want ChatGPT to know your documents or PDFs? RAG does that. It mixes search with generation. Perfect for building custom bots or AI assistants.


*5. Instruction Tuning*

Ever noticed how GPT-4 just knows how to follow instructions better? Thatโ€™s because itโ€™s been trained on instruction-style prompts โ€” "summarize this", "translate that", etc.


*6. Chain of Thought (CoT) Prompting*

Tell AI to think step by step โ€” and it will!

CoT prompting boosts reasoning and math skills. Just add โ€œLetโ€™s think step-by-stepโ€ and watch the magic.


*7. Fine-tuning vs. Prompt-tuning*

- Fine-tuning: Teach the model new behavior permanently.

- Prompt-tuning: Use clever inputs to guide responses without retraining.

You can think of it as permanent tattoo vs. temporary sticker. ๐Ÿ˜…



*8. Latent Space*

This is where creativity happens. Whether generating text, images, or music โ€” AI dreams in latent space before showing you the result.


*9. Diffusion vs GANs*

- Diffusion = controlled chaos (used by DALLยทE 3, MidJourney)

- GANs = two AIs fighting โ€” one generates, one critiques

Both create stunning visuals, but Diffusion is currently winning the art game.



*10. Agents / Auto-GPT / BabyAGI*

These are like AI with goals. They donโ€™t just respond โ€” they act, search, loop, and try to accomplish tasks. Think of it like ChatGPT that books your flight and packs your bag.

React with โค๏ธ if it helps

If you understand even 5 of these terms, you're already ahead of 95% of the crowd.

Credits: https://whatsapp.com/channel/0029VazaRBY2UPBNj1aCrN0U
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ฅ๐—ฒ๐˜€๐—ผ๐˜‚๐—ฟ๐—ฐ๐—ฒ๐˜€ ๐—ง๐—ต๐—ฎ๐˜โ€™๐—น๐—น ๐— ๐—ฎ๐—ธ๐—ฒ ๐—ฆ๐—ค๐—Ÿ ๐—™๐—ถ๐—ป๐—ฎ๐—น๐—น๐˜† ๐—–๐—น๐—ถ๐—ฐ๐—ธ.๐Ÿ˜

SQL seems tough, right? ๐Ÿ˜ฉ

These 5 FREE SQL resources will take you from beginner to advanced without boring theory dumps or confusion.๐Ÿ“Š

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3GtntaC

Master it with ease. ๐Ÿ’ก
Python Patterns ๐Ÿ‘†
๐—ช๐—ฎ๐—ป๐˜ ๐˜๐—ผ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ โ€” ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜ โ€” ๐——๐—ถ๐—ฟ๐—ฒ๐—ฐ๐˜๐—น๐˜† ๐—ณ๐—ฟ๐—ผ๐—บ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ?๐Ÿ˜

Whether youโ€™re a student, job seeker, or just hungry to upskill โ€” these 5 beginner-friendly courses are your golden ticket. ๐ŸŽŸ๏ธ

Just career-boosting knowledge and certificates that make your resume pop๐Ÿ“„

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/42vL6br

All The Best ๐ŸŽŠ