Forwarded from ترجمه انگلیسی به فارسی
عنوان فارسی مقاله : روشهای تشخیص علائم بیمار برای سیستم های تخصصی پزشکی سرطان پستان: رویکرد تجزیه زبان وب معنایی و زبان طبیعی
.
English Article Title: Patient symptoms elicitation process for breast cancer medical expert systems: A semantic web and natural language parsing approach
Year: 2018
Publisher: ELSEVIER
Journal: Future Computing and Informatics Journal
DOI: https://doi.org/10.1016/j.fcij.2017.11.003
Keywords:
#Medical_terms
#Semantic_web
#Natural_language_processing (#NLP)
#Rule_sets
#Inference
#Heuristics
#علوم_پزشکی_و_بهداشت (#health)
#مقاله_پزشکی (#Medical)
#مقاله_پرستاری (#Nursing)
#علوم_زیستی_و_کشاورزی (#Life_Sciences)
#مقاله_بیوشیمی
#مقاله_ژنتیک
#مقاله_زیست_مولکولی (#Biochemistry_Genetics_and_Molecular_Biology)
#علوم_پایه_و_فنی_مهندسی (#Physical_Sciences_and_Engineering)
#مقاله_کامپیوتر (#Computer_Science)
#اصطلاحات_پزشکی
#وب_معنایی
#پردازش_زبان_طبیعی
#مجموعه_قوانین
#استنباط
#اکتشاف
#سرطان_پستان
#سرطان
چکیده مقاله: جمع آوری اطلاعات از بیمار توسط پزشکان طی مراحل تشخیص ممکن است زمانی بعضی از مهارت ها به طور مناسب جهت جمع آوری اطلاعات مورد نیاز برای این روش کافی باشد. وضعیتی که این جمع آوری اطلاعات ممکن است در زمانیکه سیستم پشتیبانی تصمیم گیری تشخیصی (DDSS) برای جمع آوری چنین اطلاعاتی از بیمار، قبل از انجام روش تشخیصی دشوار است. تحقیقات ثابت کرده است که برای اطمینان از ورودی کاربر یا بیمار، در فرم خام خود، نگاشت ها را در لیست شرایط قابل قبول پزشکی برای وظایف تشخیصی قرار داده است. در نتیجه، این مقاله یک مدل مولد ورودی رسمی را ارائه می دهد که با ایجاد یک فرایند استنتاج، واژه نامه سرطان پستان، مجموعه قوانین و پردازش زبان طبیعی (NLP)، این کمبود را مورد توجه قرار می دهد. ما یک الگوریتم تولید ورودی را ایجاد کردیم که از قابلیت پردازش زبان طبیعی پایتون در اولین فیلتر کردن و تولید اولین مجموعه از پیش ورودی استفاده می کرد. علاوه بر این، این الگوریتم سپس در مجموعه کلمه قبل از ورودی به عنوان ورودی به موتور استنتاج که در حافظه آن مجموعه قوانین و لغت نامه مبتنی بر هستی شناخته شده است، تغذیه می کند. در نهایت، این یک لیست از نشانه های قابل قبول را که به سیستم متخصص پزشکی یا DDSS برای تشخیص سرطان سینه ارسال می شود، تولید می کند. این مدل پیشنهادی بر روی DDSS مبتنی بر سرطان سینه پیش از این توسط این نویسندگان طراحی شده است و نتیجه نشان می دهد که پشتیبانی استنتاج از این مدل، ورودی اضافی حدود 64٪ در مقایسه با زمانی که ورودی بیمار که در آن به عنوان ورودی در حالت ارسال فرستاده شده است.
کلمات کلیدی : اصطلاحات پزشکی ، وب معنایی ، پردازش زبان طبیعی (NLP) ، مجموعه قوانین ، استنباط ، اکتشاف
لینک دانلود رایگان مقاله انگلیسی و خرید ترجمه فارسی مقاله :
Free download link: https://bit.ly/3bqCANa
.
English Article Title: Patient symptoms elicitation process for breast cancer medical expert systems: A semantic web and natural language parsing approach
Year: 2018
Publisher: ELSEVIER
Journal: Future Computing and Informatics Journal
DOI: https://doi.org/10.1016/j.fcij.2017.11.003
Keywords:
#Medical_terms
#Semantic_web
#Natural_language_processing (#NLP)
#Rule_sets
#Inference
#Heuristics
#علوم_پزشکی_و_بهداشت (#health)
#مقاله_پزشکی (#Medical)
#مقاله_پرستاری (#Nursing)
#علوم_زیستی_و_کشاورزی (#Life_Sciences)
#مقاله_بیوشیمی
#مقاله_ژنتیک
#مقاله_زیست_مولکولی (#Biochemistry_Genetics_and_Molecular_Biology)
#علوم_پایه_و_فنی_مهندسی (#Physical_Sciences_and_Engineering)
#مقاله_کامپیوتر (#Computer_Science)
#اصطلاحات_پزشکی
#وب_معنایی
#پردازش_زبان_طبیعی
#مجموعه_قوانین
#استنباط
#اکتشاف
#سرطان_پستان
#سرطان
چکیده مقاله: جمع آوری اطلاعات از بیمار توسط پزشکان طی مراحل تشخیص ممکن است زمانی بعضی از مهارت ها به طور مناسب جهت جمع آوری اطلاعات مورد نیاز برای این روش کافی باشد. وضعیتی که این جمع آوری اطلاعات ممکن است در زمانیکه سیستم پشتیبانی تصمیم گیری تشخیصی (DDSS) برای جمع آوری چنین اطلاعاتی از بیمار، قبل از انجام روش تشخیصی دشوار است. تحقیقات ثابت کرده است که برای اطمینان از ورودی کاربر یا بیمار، در فرم خام خود، نگاشت ها را در لیست شرایط قابل قبول پزشکی برای وظایف تشخیصی قرار داده است. در نتیجه، این مقاله یک مدل مولد ورودی رسمی را ارائه می دهد که با ایجاد یک فرایند استنتاج، واژه نامه سرطان پستان، مجموعه قوانین و پردازش زبان طبیعی (NLP)، این کمبود را مورد توجه قرار می دهد. ما یک الگوریتم تولید ورودی را ایجاد کردیم که از قابلیت پردازش زبان طبیعی پایتون در اولین فیلتر کردن و تولید اولین مجموعه از پیش ورودی استفاده می کرد. علاوه بر این، این الگوریتم سپس در مجموعه کلمه قبل از ورودی به عنوان ورودی به موتور استنتاج که در حافظه آن مجموعه قوانین و لغت نامه مبتنی بر هستی شناخته شده است، تغذیه می کند. در نهایت، این یک لیست از نشانه های قابل قبول را که به سیستم متخصص پزشکی یا DDSS برای تشخیص سرطان سینه ارسال می شود، تولید می کند. این مدل پیشنهادی بر روی DDSS مبتنی بر سرطان سینه پیش از این توسط این نویسندگان طراحی شده است و نتیجه نشان می دهد که پشتیبانی استنتاج از این مدل، ورودی اضافی حدود 64٪ در مقایسه با زمانی که ورودی بیمار که در آن به عنوان ورودی در حالت ارسال فرستاده شده است.
کلمات کلیدی : اصطلاحات پزشکی ، وب معنایی ، پردازش زبان طبیعی (NLP) ، مجموعه قوانین ، استنباط ، اکتشاف
لینک دانلود رایگان مقاله انگلیسی و خرید ترجمه فارسی مقاله :
Free download link: https://bit.ly/3bqCANa
Forwarded from ترجمه انگلیسی به فارسی
عنوان فارسی مقاله : مدل خطی پویا بیزی برای پیش بینی زمان سفر کوتاه مدت در زمان واقعی بزرگراه
.
English Article Title: A bayesian dynamic linear model approach for real-time short-term freeway travel time prediction
Year: 2011
Publisher: Elsevier
Journal: Transportation Research Part C: Emerging Technologies
DOI: https://doi.org/10.1016/j.trc.2010.10.005
Keywords:
#Real_time_travel_time_prediction
#Advanced_Traveler_Information_Systems
#Bayesian_inference
#Prediction_confidence_intervals
#Adaptive_control
#علوم_پایه_و_فنی_مهندسی (#Physical_Sciences_and_Engineering)
#مقاله_کامپیوتر (#Computer_Science)
#علوم_انسانی_و_اجتماعی (#Social_Sciences_and_Humanities)
#مقاله_علوم_اجتماعی (#Social_Sciences)
#پیش_بینی_زمان_سفر_در_زمان_واقعی
#سیستم_های_اطلاعات_پیشرفته_مسافر
#استنباط_بیزی
#فواصل_اطمینان_پیش_بینی
#کنترل_تطبیقی
چکیده مقاله:
این مقاله یک مدل خطی پویای بیزی (DLM)را برای پیشبینی زمان سفر کوتاهمدت آنلاین در مسیر بزرگراه، ارائه میکند. روش پیشنهادی زمان سفر بزرگراه پیشبینیشده را به عنوان مجموع متوسط زمان سفر گذشته، تغییرات تصادفی در زمان سفر ، و خطای تکامل مدل در نظر میگیرد، که در آن میانه برای تشخیص الگوی زمان سفر اولیه بکار گرفته میشود در حالی که تنوع عرضه غیر منتظره (یعنی ظرفیت)کاهش و نوسانات تقاضا را ثبت میکند. پیشبینی بیزی یک فرآیند یادگیری است که به طور مداوم وضعیت دانش قبلی زمان سفر براساس اطلاعات در دسترس را مورد بازبینی قرار میدهد. نتیجه پیشبینی یک توزیع زمان سفر است که میتواند برای تولید یک مقدار واحد (معمولا نه لزوما میانگین)زمان سفر و همچنین یک فاصله اطمینان از عدم قطعیت پیشبینی زمان سفر بکار رود. برای دتکتوری بهتر زمان سفر در طی تراکم غیرتکراری ناشی از رویدادهای پیشبینینشده (به عنوان مثال، حوادث، تصادف و یا آب و هوای بد)، DLM در چارچوب کنترل تطبیقی ادغام میشود که میتواند به طور خودکار سطح نویز تکامل سیستم را یاد بگیرد و تنظیم کند. نتایج آزمایش براساس دادههای آشکارساز(دتکتور) حلقه واقعی یک بخش ۶۶ I -در ویرجینیای شمالی، نشان میدهد که روش پیشنهادی قادر به ارائه پیشبینی زمان سفر دقیق و قابلاطمینان تحت شرایط ترافیکی تکراری و غیرتکراری میباشد.
کلمات کلیدی: پیش بینی زمان سفر در زمان واقعی، سیستم های اطلاعات پیشرفته مسافر، استنباط بیزی، فواصل اطمینان پیش بینی، کنترل تطبیقی
لینک دانلود رایگان مقاله انگلیسی و خرید ترجمه فارسی مقاله :
Free download link: https://bit.ly/2LwYJyv
.
English Article Title: A bayesian dynamic linear model approach for real-time short-term freeway travel time prediction
Year: 2011
Publisher: Elsevier
Journal: Transportation Research Part C: Emerging Technologies
DOI: https://doi.org/10.1016/j.trc.2010.10.005
Keywords:
#Real_time_travel_time_prediction
#Advanced_Traveler_Information_Systems
#Bayesian_inference
#Prediction_confidence_intervals
#Adaptive_control
#علوم_پایه_و_فنی_مهندسی (#Physical_Sciences_and_Engineering)
#مقاله_کامپیوتر (#Computer_Science)
#علوم_انسانی_و_اجتماعی (#Social_Sciences_and_Humanities)
#مقاله_علوم_اجتماعی (#Social_Sciences)
#پیش_بینی_زمان_سفر_در_زمان_واقعی
#سیستم_های_اطلاعات_پیشرفته_مسافر
#استنباط_بیزی
#فواصل_اطمینان_پیش_بینی
#کنترل_تطبیقی
چکیده مقاله:
این مقاله یک مدل خطی پویای بیزی (DLM)را برای پیشبینی زمان سفر کوتاهمدت آنلاین در مسیر بزرگراه، ارائه میکند. روش پیشنهادی زمان سفر بزرگراه پیشبینیشده را به عنوان مجموع متوسط زمان سفر گذشته، تغییرات تصادفی در زمان سفر ، و خطای تکامل مدل در نظر میگیرد، که در آن میانه برای تشخیص الگوی زمان سفر اولیه بکار گرفته میشود در حالی که تنوع عرضه غیر منتظره (یعنی ظرفیت)کاهش و نوسانات تقاضا را ثبت میکند. پیشبینی بیزی یک فرآیند یادگیری است که به طور مداوم وضعیت دانش قبلی زمان سفر براساس اطلاعات در دسترس را مورد بازبینی قرار میدهد. نتیجه پیشبینی یک توزیع زمان سفر است که میتواند برای تولید یک مقدار واحد (معمولا نه لزوما میانگین)زمان سفر و همچنین یک فاصله اطمینان از عدم قطعیت پیشبینی زمان سفر بکار رود. برای دتکتوری بهتر زمان سفر در طی تراکم غیرتکراری ناشی از رویدادهای پیشبینینشده (به عنوان مثال، حوادث، تصادف و یا آب و هوای بد)، DLM در چارچوب کنترل تطبیقی ادغام میشود که میتواند به طور خودکار سطح نویز تکامل سیستم را یاد بگیرد و تنظیم کند. نتایج آزمایش براساس دادههای آشکارساز(دتکتور) حلقه واقعی یک بخش ۶۶ I -در ویرجینیای شمالی، نشان میدهد که روش پیشنهادی قادر به ارائه پیشبینی زمان سفر دقیق و قابلاطمینان تحت شرایط ترافیکی تکراری و غیرتکراری میباشد.
کلمات کلیدی: پیش بینی زمان سفر در زمان واقعی، سیستم های اطلاعات پیشرفته مسافر، استنباط بیزی، فواصل اطمینان پیش بینی، کنترل تطبیقی
لینک دانلود رایگان مقاله انگلیسی و خرید ترجمه فارسی مقاله :
Free download link: https://bit.ly/2LwYJyv