⚡️⚡️⚡️ Train 400x faster Static Embedding Models with Sentence Transformers
Интересное чтиво- очень быстрый метод обучения статических моделей эмбедингов, которые выполняются на процессоре.
На тестах он показал себя в 100-400 раз быстрее, чем обычные модели, при сохранении качества более в районе 85%!
Внутри:
- Две модели (для английского языка и многоязычная),
- Подробная стратегия обучения, которой следовали авторы, от разработки идеи до выбора фдатасета, реализации и оценки.
- Сценарии обучения, основанные на опенсорсной библиотеке sentence transformers с открытым исходным кодом.
- Отчеты о весах и отклонениях с метриками обучения и оценки, собранными во время обучения.
- Список датасетов, которые авторы использовали: 30 для обучения и 13 для оценки моделей.
🤗 HF: https://huggingface.co/blog/static-embeddings
#transformers #embeddingmodel #tutorial
Интересное чтиво- очень быстрый метод обучения статических моделей эмбедингов, которые выполняются на процессоре.
На тестах он показал себя в 100-400 раз быстрее, чем обычные модели, при сохранении качества более в районе 85%!
Внутри:
- Две модели (для английского языка и многоязычная),
- Подробная стратегия обучения, которой следовали авторы, от разработки идеи до выбора фдатасета, реализации и оценки.
- Сценарии обучения, основанные на опенсорсной библиотеке sentence transformers с открытым исходным кодом.
- Отчеты о весах и отклонениях с метриками обучения и оценки, собранными во время обучения.
- Список датасетов, которые авторы использовали: 30 для обучения и 13 для оценки моделей.
🤗 HF: https://huggingface.co/blog/static-embeddings
#transformers #embeddingmodel #tutorial
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Новый токенизатор, который позволяет обучать VLA в 5 раз быстрее по сравнению с предыдущей SoTA.
Его очень легко использовать и это опенсорс.
▪Описание: http://pi.website/research/fast
▪HF: https://huggingface.co/physical-intelligence/fast
▪Статья: https://www.pi.website/download/fast.pdf
@data_analysis_ml
#robots #tokenization
Please open Telegram to view this post
VIEW IN TELEGRAM
🌮 TACO: Learning Multi-modal Action Models with Synthetic Chains-of-Thought-and-Action
TACO новое семейство мультимодальных моделей с открытым исходным кодом, которые хорошо справляются со сложными задачами визуального анализа, требующими нескольких шагов размышлений и использования внешних инструментов!
Модели TACO превосходят базовые, настроенные на основе прометав модели, по 8 тестам, достигая улучшения в среднем на 3,6%, а в задачах MMVet, связанных с распознаванием текста, математическим мышлением и пространственным мышлением, прирост достигает 15%.
▪Github
▪Paper
▪Dataset
▪Demo
@data_analysis_ml
TACO новое семейство мультимодальных моделей с открытым исходным кодом, которые хорошо справляются со сложными задачами визуального анализа, требующими нескольких шагов размышлений и использования внешних инструментов!
Модели TACO превосходят базовые, настроенные на основе прометав модели, по 8 тестам, достигая улучшения в среднем на 3,6%, а в задачах MMVet, связанных с распознаванием текста, математическим мышлением и пространственным мышлением, прирост достигает 15%.
▪Github
▪Paper
▪Dataset
▪Demo
@data_analysis_ml
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
В нем рассказывается как правильно работать с функциями и вызывать их. Внутри много рекомендаций и рабочих примеров.
https://platform.openai.com/docs/guides/function-calling.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Вы можете практиковаться и изучать CUDA онлайн, без использования графического процессора!
https://leetgpu.com/
@data_analysis_ml
#cuda #gpu #cpu #playground
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
✅Генерация бесконечных 4D городов
CityDreamer4D - это новая генеративная модель создания городов в 4D, которая объединяет статические и динамические сцены.
Заявлена высокая управляемость и реалистичность генераций.
- Проект: https://infinitescript.com/project/city-dreamer-4d/
- Код (обещают залить в ближайшее время ): https://github.com/hzxie/CityDreamer4D
- Датасет CityTopia: https://gateway.infinitescript.com/s/CityTopia
@data_analysis_ml
CityDreamer4D - это новая генеративная модель создания городов в 4D, которая объединяет статические и динамические сцены.
Заявлена высокая управляемость и реалистичность генераций.
- Проект: https://infinitescript.com/project/city-dreamer-4d/
- Код (обещают залить в ближайшее время ): https://github.com/hzxie/CityDreamer4D
- Датасет CityTopia: https://gateway.infinitescript.com/s/CityTopia
@data_analysis_ml
🔥Google представили стратегию эволюционного поиска для масштабирования времени инференса в больших языковых моделях.
Предлагаемый подход, Mind Evolution, использует языковую модель для генерации, рекомбинации и уточнения ответов-модели.
Контролируя инференс модели, разработчики обнаружили, что Mind Evolution значительно превосходит другие стратегии инференса, такие как Best-of-N и Sequential Revision, в задачах планирования на естественном языке.
В бенчмарках TravelPlanner и Natural Plan Mind Evolution, модель решает успешно более 98 %.
https://huggingface.co/papers/2501.09891
Предлагаемый подход, Mind Evolution, использует языковую модель для генерации, рекомбинации и уточнения ответов-модели.
Контролируя инференс модели, разработчики обнаружили, что Mind Evolution значительно превосходит другие стратегии инференса, такие как Best-of-N и Sequential Revision, в задачах планирования на естественном языке.
В бенчмарках TravelPlanner и Natural Plan Mind Evolution, модель решает успешно более 98 %.
https://huggingface.co/papers/2501.09891
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
P.S. Вышли новые модели DeepSeek если вы вдруг пропустили.
#DeepSeek #deepseekv3 #reasoning #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM