NLPAug предлагает различные методы для расширения датасетов, улучшения обобщения и производительности моделей при работе с данными.
Эта библиотека позволяет генерировать новый текст на основе существующих данных, заменяя некоторые слова синонимами, в том числе используя принцип косинусного сходства в векторных представлениях, аналогичный тому, который используется в моделях word2vec или GloVe.
Кроме того, NLPAug может заменить слова на основе контекста с помощью моделей трансформеров, таких как BERT-сети, а также выполнять двойной перевод текста на другой язык и обратно.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7👍3🔥2🥱1🌭1
Включает поддержку пользовательских моделей и различных языков, а также интеграцию с почтовыми сервисами и мультимедийными приложениями.
▪️Github
@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🔥6❤5🌭1
В ней используется объектно-ориентированное программирование (ООП) для взаимодействия с LLM моделями, что упрощает создание и управление запросами через объекты и типы
Простота использования и мощный функционал делают библиотеку полезным инструментом для разработки ИИ-агентов и работы с большими языковыми моделями
▪️Github
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16❤6🔥3
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍14❤4🔥1
Zamba2-Instruct - семейство инструктивных моделей на архитектуре Mamba2+Transformers для NLP-задач.
В семействе 2 модели:
Высокая производительность семейства по сравнению с релевантными Transformers-only моделями достигается за счет конкатенации эмбедингов модели с входными данными для блока внимания и использование LoRA projection matrices к общему MLP-слою.
Модели файнтюнились (SFT+DPO) на instruct-ориентированных наборах данных (ultrachat_200k, Infinity-Instruct, ultrafeedback_binarized, orca_dpo_pairs и OpenHermesPreferences).
Тесты Zamba2-Instruct продемонстрировали внушительную скорость генерации текста и эффективное использование памяти, обходя MT-bench более крупные по количеству параметров модели/ (Zamba2-Instruct-2.7B превзошла Mistral-7B-Instruct-v0.1, а Zamba2-Instruct-1.2B - Gemma2-2B-Instruct)
⚠️ Для запуска на СPU укажите
use_mamba_kernels=False
при загрузке модели с помощью AutoModelForCausalLM.from_pretrained
.# Clone repo
git clone https://github.com/Zyphra/transformers_zamba2.git
cd transformers_zamba2
# Install the repository & accelerate:
pip install -e .
pip install accelerate
# Inference:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-2.7B-instruct")
model = AutoModelForCausalLM.from_pretrained("Zyphra/Zamba2-2.7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16)
user_turn_1 = "user_prompt1."
assistant_turn_1 = "assistant_prompt."
user_turn_2 = "user_prompt2."
sample = [{'role': 'user', 'content': user_turn_1}, {'role': 'assistant', 'content': assistant_turn_1}, {'role': 'user', 'content': user_turn_2}]
chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)
input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to("cuda")
outputs = model.generate(**input_ids, max_new_tokens=150, return_dict_in_generate=False, output_scores=False, use_cache=True, num_beams=1, do_sample=False)
print((tokenizer.decode(outputs[0])))
@data_analysis_ml
#AI #ML #SLM #Zamba2 #Instruct
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11❤3🔥2
🎓 Deep Gen-AI
✅ Полный курс от Стэнфорда, посвященный алгоритмам и методам обучения Генеративных моделей, включая вариационные автоэнкодеры, генерирующие состязательные сети, авторегрессионные модели и многое другое.
📌 Курс
@data_analysis_ml
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥16❤8👍5
Forwarded from Machinelearning
BrainChip анонсировала Akida Pico — нейроморфный процессор с энергопотреблением всего 1 мВт, предназначенный для устройств с ограниченным питанием: смартфоны, носимая электроника и умные устройства.
Akida Pico имитирует работу мозга, обмениваясь электрическими импульсами (спайками) вместо традиционных логических цепей. Чип включает нейронный процессор, блоки обработки событий, SRAM для хранения весов модели, блоки прямого доступа к памяти и дополнительные периферийные устройства. В некоторых случаях он может работать автономно.
BrainChip разработала архитектуры моделей ИИ, оптимизированные для минимального энергопотребления, снижая потребление энергии в пять раз по сравнению с традиционными моделями на обычных микропроцессорах. Akida Pico может использоваться для голосовой активации, шумоподавления в наушниках, AR-очках и слуховых аппаратах.
spectrum.ieee.org
Gemini Live запускает поддержку генеративного ИИ-помощника на более чем 40 языках. Инструмент позволит общаться на двух языках на одном устройстве, и в разработке находится дальнейшее расширение одновременно поддерживаемых языков.
Многоязычная поддержка также будет работать с интеграцией Gemini для других приложений и сервисов Google: Google Календарь, Задачи, Keep и Утилиты.
Установить предпочитаемые языки в приложении Android: «Настройки» > «Google Ассистент» > «Языки» и выберите первый предпочитаемый язык. Для второго языка есть опция «Добавить язык».
О планах по выпуску Gemini Live для iPhone не сообщалось.
engadget.com
В MIT CSAIL разработали метод Message-Passing Monte Carlo (MPMC), основанный на GNN, которые позволяют точкам самооптимизироваться и достигать лучшей равномерности для решения сложных многомерных задач. GNN преобразуют случайные выборки, минимизируя L2-расхождение, что позволяет MPMC создавать наборы точек, подходящие для конкретных приложений.
В вычислительных финансах MPMC может улучшить результаты в задачах ценообразования опционов и оценки рисков, а в робототехнике - помочь в планировании пути и движении для оптимальной навигации роботов.
news.mit.edu
CharacterAi решила отказаться от разработки больших языковых моделей и сосредоточиться на улучшении потребительской платформы. Это решение было принято после сделки с Google, в рамках которой интернет-гигант приобрел единовременную лицензию на технологию CharacterAi.
Рост затрат на обучение моделей усложнил конкуренцию с Google, Microsoft, OpenAI и Amazon. Компания решила сконцентрироваться на создании масштабируемой платформы чат-ботов, аудитория которой, по оценкам, насчитывает более 20 миллионов активных пользователей в месяц.
Несмотря на уход основателей и сокращение амбиций в области разработки моделей, компания с оптимизмом смотрит в будущее благодаря финансированию от Google.
btimesonline.com
BM Research и NASA совместно разработали Prithvi WxC – модель глубокого обучения для прогнозирования погоды и моделирования климата с 2,3 млрд. параметров и 160 переменными из набора данных MERRA-2.
Модель использует трансформерную архитектуру для обработки долгосрочных зависимостей, комбинацию локальных и глобальных механизмов внимания для обработки больших объемов данных и эффективного захвата пространственно-временных закономерностей.
Prithvi WxC обучается с помощью комбинированной функции цели, которая объединяет задачи маскированной реконструкции и прогнозирования, что повышает ее универсальность в различных приложениях, включая прогнозирование с авторегрессионным развертыванием и оценку экстремальных погодных явлений.
Arxiv | Модель на HF | Проект на Github
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤4🔥1
🚀🔥 LLaVA-Critic - первая крупномасштабная мультимодальная модель с открытым исходным кодом, предназначенная для оценки эффективности модели в различных мультимодальных задачах!
Так же представлен LLaVA-Critic-113k, высококачественный набор данных, который позволяет получать количественные оценки работы Llm.
Подробнее:
- 📰Статья: https://arxiv.org/abs/2410.02712
- 🪐Страница проекта: https://llava-vl.github.io/blog/2024-10-03-llava-critic/
- 📦Набор данных: https://huggingface.co/datasets/lmms-lab/llava-critic-113k
- 🤗Модели: https://huggingface.co/collections/lmms-lab/llava-critic-66fe3ef8c6e586d8435b4af8
@data_analysis_ml
Так же представлен LLaVA-Critic-113k, высококачественный набор данных, который позволяет получать количественные оценки работы Llm.
Подробнее:
- 📰Статья: https://arxiv.org/abs/2410.02712
- 🪐Страница проекта: https://llava-vl.github.io/blog/2024-10-03-llava-critic/
- 📦Набор данных: https://huggingface.co/datasets/lmms-lab/llava-critic-113k
- 🤗Модели: https://huggingface.co/collections/lmms-lab/llava-critic-66fe3ef8c6e586d8435b4af8
@data_analysis_ml
👍12❤4🔥2
https://www.youtube.com/watch?v=3mcs_MDiLwY
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
YouTube
Fireducks: Ускорь Pandas в 20 раз, изменив всего одну строчку кода!!!
💡 Pandas часто бывает медленным из-за ограничений, таких как одноядерные вычисления и громоздкие DataFrame-ы. Но есть простое решение: FireDucks — библиотека с таким же API, как у Pandas, которая решает эти проблемы и значительно ускоряет обработку данных.…
🔥21👍3❤2
🚀 Nvidia представляет EdgeRunner!
Этот метод позволяет создавать высококачественные 3D-сетки с количеством граней до 4000 при разрешении 512 на основе облаков точек.
https://research.nvidia.com/labs/dir/edgerunner/
@data_analysis_ml
Этот метод позволяет создавать высококачественные 3D-сетки с количеством граней до 4000 при разрешении 512 на основе облаков точек.
https://research.nvidia.com/labs/dir/edgerunner/
@data_analysis_ml
👍8❤3🔥1🤣1
♠️ Бесплатный курс от MIT: Теория и Аналитика покера
В этом курсе от MIT подробно рассматривается теория покера, математика покера и применение покерной аналитики в управлении инвестициями и трейдинге.
▪️Материалы Курса
@data_analysis_ml
В этом курсе от MIT подробно рассматривается теория покера, математика покера и применение покерной аналитики в управлении инвестициями и трейдинге.
▪️Материалы Курса
@data_analysis_ml
❤20👍11🔥6❤🔥2
▪️Github
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13❤8🔥1
👉Пост
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍49❤8🔥4😱3😁1😢1🥴1🏆1
▪️Github
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10❤5🥰2👍1
This media is not supported in your browser
VIEW IN TELEGRAM
Также на площадке присутствуют еженедельные мл конкурсы среди самых популярных и полезных моделей
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍6🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
> Pyramid Flow: эффективный для обучения метод авторегрессивной генерации видео.
> Обучается на наборах данных с открытым исходным кодом
> Генерирует высококачественные 10-секундные видеоролики
> Разрешение видео: 768p
> Частота кадров: 24 кадр/с
> Поддерживает генерацию изображений в видео
> Доступна на HF 🤗
https://huggingface.co/rain1011/pyramid-flow-sd3
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤5🔥2