На Huffingface пользователь bartowski опубликовал несколько квантизированных версий с разной степенью сжатия,
Размерность моделей: от IQ2_XS (10.3 Gb) до Q8_0_L (37.4GB), рекомендуемая — Q6_K.
Семейство Dolfin основано на моделях Yi и распространяется по лицензии Аpache 2.0
Dolphin-2.9.3 обладает разнообразными навыками следования инструкциям, общения и программирования. Она также имеет начальные агентные способности и поддерживает вызов функций.
Модель не имеет цензуры. Создатели отфильтровали набор данных, чтобы удалить выравнивание и предвзятость. Dolphin обучался на данных, полученных из GPT4, среди других моделей.
🤗 Hugging Face
@data_analysis_ml
#LLM #ML #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤4🔥3
Forwarded from Machinelearning
SmolVLM - серия компактных VLM отличающихся высокой эффективностью использования памяти и могут быть развернуты на локальных устройствах с ограниченными ресурсами.
Только что были выпущены SmolVLM (256M и 500M), которым требуются GPU <1GB для запуска.
Модели настолько маленькт, что могут работать 100% локально в вашем браузере на WebGPU!
🤗 Модели: https://huggingface.co/collections/HuggingFaceTB/smolvlm-256m-and-500m-6791fafc5bb0ab8acc960fb0
@ai_machinelearning_big_data
#AI #ML #SmallVLM #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤5🔥1
Forwarded from Machinelearning
1. Руководство по дистилляции от OpenAI
Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.
Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.
- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.
- Создание обучающих данных для компактной модели: Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.
- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.
2. Учебник по дистилляции знаний от PyTorch
Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.
Основные аспекты руководства:
- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.
- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.
- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.
Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.
▪Ссылка
3. Jetson Introduction to Knowledge Distillation от Nvidia
В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.
Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.
Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.
4. Учебник по дистилляции знаний от Keras
Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.
5. Руководство по дистилляции от
huggingface 🤗
Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.
6. Дистилляция знаний для задач компьютерного зрения от huggingface
Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.
#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13❤6🔥4
Forwarded from Machinelearning
QWEN только что выпустили новую модель на 32B параметров, Qwen2.5-VL-32B-Instruct.
Эта модель представляет собой значительный прогресс для своего размера. И что самое лучшее, она лицензирована Apache 2.
Модель выдает более подробные и структурированный ответы.
💡 Детальное понимание: превосходные возможности анализа изображений и визуальной логической дедукции.
📊 Превосходит сопоставимые модели, такие как Mistral-Small-3.1-24B и Gemma-3-27B-IT.
🚀 В нескольких тестах даже превосходит более крупный Qwen2-VL-72B-Instruct.
Еще один крутой релиз понедельника!
ВЧ: https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
@ai_machinelearning_big_data
#AI #ML #LLM #Dataset #HuggingFace
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11🔥6❤4
Forwarded from Machinelearning
Представлены значительные улучшения, особенно в области хранения и обработки больших моделей и датасетов.
Интеграция с Xet: Внедрена поддержка Xet — передового протокола для хранения крупных объектов в Git-репозиториях, призванного заменить Git LFS.
В отличие от LFS, который выполняет дедупликацию на уровне файлов, Xet работает на уровне фрагментов данных, что особенно полезно для специалистов, работающих с массивными моделями и датасетами.
Для интеграции с Python используется пакет
xet-core,
написанный на Rust, который обрабатывает все низкоуровневые детали.Чтобы начать использовать Xet, установите дополнительную зависимость:
pip install -U huggingface_hub[hf_xet]
После установки вы сможете загружать файлы из репозиториев, поддерживающих Xet.
Доплнительно:
huggingface-cli delete-cache
получила опцию --sort для сортировки кэшированных репозиториев (например, по размеру: --sort=size
).@ai_machinelearning_big_data
#huggingface #release #xet
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤4🔥2
🩺 Google выпустила MedGemma — открытые модели ИИ для медицины
На Hugging Face вышла коллекция MedGemma, созданная Google на базе Gemma 3 специально для медицинских задач. Это мощные модели, способные анализировать как текст, так и медицинские изображения — от рентгена до дерматологии.
📦 В коллекции:
•
•
•
🔍 Что умеют:
✅ Обнаружение патологий на рентген-снимках
✅ Ответы на медицинские вопросы (VQA)
✅ Генерация медицинских отчётов
✅ Обработка клинических заметок, триажа, историй болезни
📊 Бенчмарки:
• CheXpert F1 (Top‑5): 48.1 vs 31.2 у базовой
• DermMCQA точность: 71.8%
• VQA‑Rad F1: 49.9
🧪 Пример использования:
🔗 Hugging Face: https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4
📝 Лицензия: Apache 2.0 (с медицинским соглашением)
#MedGemma #GoogleAI #Gemma3 #HealthcareAI #RadiologyAI #MedicalAI #OpenSourceAI #HuggingFace
На Hugging Face вышла коллекция MedGemma, созданная Google на базе Gemma 3 специально для медицинских задач. Это мощные модели, способные анализировать как текст, так и медицинские изображения — от рентгена до дерматологии.
📦 В коллекции:
•
medgemma-4b-it
— мультимодальная модель (текст + изображения) •
medgemma-4b-pt
— предварительно обученная версия •
medgemma-27b-text-it
— огромная текстовая модель для клинической документации🔍 Что умеют:
✅ Обнаружение патологий на рентген-снимках
✅ Ответы на медицинские вопросы (VQA)
✅ Генерация медицинских отчётов
✅ Обработка клинических заметок, триажа, историй болезни
📊 Бенчмарки:
• CheXpert F1 (Top‑5): 48.1 vs 31.2 у базовой
• DermMCQA точность: 71.8%
• VQA‑Rad F1: 49.9
🧪 Пример использования:
from transformers import pipeline
pipe = pipeline("image-text-to-text", model="google/medgemma-4b-it")
🔗 Hugging Face: https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4
📝 Лицензия: Apache 2.0 (с медицинским соглашением)
#MedGemma #GoogleAI #Gemma3 #HealthcareAI #RadiologyAI #MedicalAI #OpenSourceAI #HuggingFace
👍22❤14🔥6
Forwarded from Machine learning Interview
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Теперь можно запускать модели Hugging Face прямо в Google Colab — бесплатно!
Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.
✅ Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций
💡 Бонус для разработчиков:
Добавь файл
Пользователи смогут запускать твой пример сразу, без копирования кода!
🔥 Работает с Google Colab — бесплатно, быстро, удобно.
#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning
✔️ Подробнее
@machinelearning_interview
Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.
✅ Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций
💡 Бонус для разработчиков:
Добавь файл
notebook.ipynb
в свой репозиторий модели — и Hugging Face автоматически подхватит его. Пользователи смогут запускать твой пример сразу, без копирования кода!
🔥 Работает с Google Colab — бесплатно, быстро, удобно.
#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥28❤10👍5
🧠 PyTorch Distributed Checkpointing теперь поддерживает HuggingFace safetensors
📦 Что произошло:
Платформа DCP (Distributed Checkpointing) в PyTorch теперь встраивает нативную поддержку формата safetensors от HuggingFace. Это важный шаг к полной совместимости с экосистемой HF, которая активно используется в инференсе и дообучении.
🔍 В чём была проблема:
• DCP раньше использовал свой собственный формат чекпоинтов
• Чтобы работать с HuggingFace, приходилось писать конвертеры
• Чекпоинты приходилось загружать локально, что усложняло пайплайны
🚀 Что изменилось:
• Теперь можно сохранять и загружать модели напрямую в safetensors
• Поддерживается любой `fsspec`-совместимый storage (S3, GCS, локалка и т.д.)
• Интеграция уже улучшила UX в
🛠 Как использовать:
• Просто передай новый load planner и storage reader в
• И аналогично — save planner + writer для
• Всё остальное работает как раньше
📈 Что это даёт:
• Меньше костылей и меньше кода
• Единый формат чекпоинтов для HF и PyTorch
• Более гибкие и производительные пайплайны
#PyTorch #HuggingFace #safetensors #ML #checkpointing #opensource
https://pytorch.org/blog/huggingface-safetensors-support-in-pytorch-distributed-checkpointing
@data_analysis_ml
📦 Что произошло:
Платформа DCP (Distributed Checkpointing) в PyTorch теперь встраивает нативную поддержку формата safetensors от HuggingFace. Это важный шаг к полной совместимости с экосистемой HF, которая активно используется в инференсе и дообучении.
🔍 В чём была проблема:
• DCP раньше использовал свой собственный формат чекпоинтов
• Чтобы работать с HuggingFace, приходилось писать конвертеры
• Чекпоинты приходилось загружать локально, что усложняло пайплайны
🚀 Что изменилось:
• Теперь можно сохранять и загружать модели напрямую в safetensors
• Поддерживается любой `fsspec`-совместимый storage (S3, GCS, локалка и т.д.)
• Интеграция уже улучшила UX в
torchtune
, став первым пользователем новой фичи🛠 Как использовать:
• Просто передай новый load planner и storage reader в
load()
• И аналогично — save planner + writer для
save()
• Всё остальное работает как раньше
📈 Что это даёт:
• Меньше костылей и меньше кода
• Единый формат чекпоинтов для HF и PyTorch
• Более гибкие и производительные пайплайны
#PyTorch #HuggingFace #safetensors #ML #checkpointing #opensource
https://pytorch.org/blog/huggingface-safetensors-support-in-pytorch-distributed-checkpointing
@data_analysis_ml
🔥10❤4👍4
🧠 FLUX.1 Kontext-Dev: текстовое редактирование изображений на новом уровне
Открытая AI-модель, которая позволяет редактировать изображения по текстовой инструкции, сохраняя структуру, стиль и контекст. Всё работает прямо в браузере или локально через Diffusers.
📦 Что умеет FLUX.1 Kontext:
• 🎨 Менять фон, стиль, объекты на изображении по описанию
• 🔁 Поддерживать итеративные изменения — можно вносить правки шаг за шагом
• 🧍♂️ Сохранять форму и позу персонажей даже после множественных трансформаций
• ⚡️ Работает на основе rectified flow transformers и guidance distillation — быстрее и компактнее аналогов
🛠 Как пользоваться:
1. Открыть демо: [huggingface.co/spaces/black-forest-labs/FLUX.1-Kontext-Dev](https://huggingface.co/spaces/black-forest-labs/FLUX.1-Kontext-Dev)
2. Загрузить своё изображение
3. Ввести текстовую инструкцию, например:
4. Получить новое изображение — и при необходимости продолжить редактирование
🔌 Интеграции:
• Поддержка Diffusers, ComfyUI, API через bfl.ai и Replicate
• Модель доступна под некоммерческой лицензией
• Подходит для локального запуска на GPU (`torch_dtype=torch.bfloat16`)
🎯 Кому это полезно:
• Дизайнерам и художникам — быстрый визуальный прототипинг
• AI-разработчикам — для создания RAG-интерфейсов с визуальной обратной связью
• Исследователям — для тестирования новых подходов к in-context image editing
🚨 Про безопасность:
Модель включает базовые фильтры генерации. Для продакшена рекомендованы расширенные фильтры (например, Hive) и собственные слои модерации.
📌 Вывод:
FLUX.1 Kontext-Dev — это не просто генератор, а полноценный AI-инструмент для интерактивного и контролируемого редактирования изображений. Идеален для творческих задач, UX-прототипов и изучения мультимодальных AI-сценариев.
#ai #diffusers #imageediting #flux1 #huggingface
📌Код
📌 Веса
@data_analysis_ml
Открытая AI-модель, которая позволяет редактировать изображения по текстовой инструкции, сохраняя структуру, стиль и контекст. Всё работает прямо в браузере или локально через Diffusers.
📦 Что умеет FLUX.1 Kontext:
• 🎨 Менять фон, стиль, объекты на изображении по описанию
• 🔁 Поддерживать итеративные изменения — можно вносить правки шаг за шагом
• 🧍♂️ Сохранять форму и позу персонажей даже после множественных трансформаций
• ⚡️ Работает на основе rectified flow transformers и guidance distillation — быстрее и компактнее аналогов
🛠 Как пользоваться:
1. Открыть демо: [huggingface.co/spaces/black-forest-labs/FLUX.1-Kontext-Dev](https://huggingface.co/spaces/black-forest-labs/FLUX.1-Kontext-Dev)
2. Загрузить своё изображение
3. Ввести текстовую инструкцию, например:
make it sunset
, add snow
, make character look older
4. Получить новое изображение — и при необходимости продолжить редактирование
🔌 Интеграции:
• Поддержка Diffusers, ComfyUI, API через bfl.ai и Replicate
• Модель доступна под некоммерческой лицензией
• Подходит для локального запуска на GPU (`torch_dtype=torch.bfloat16`)
🎯 Кому это полезно:
• Дизайнерам и художникам — быстрый визуальный прототипинг
• AI-разработчикам — для создания RAG-интерфейсов с визуальной обратной связью
• Исследователям — для тестирования новых подходов к in-context image editing
🚨 Про безопасность:
Модель включает базовые фильтры генерации. Для продакшена рекомендованы расширенные фильтры (например, Hive) и собственные слои модерации.
📌 Вывод:
FLUX.1 Kontext-Dev — это не просто генератор, а полноценный AI-инструмент для интерактивного и контролируемого редактирования изображений. Идеален для творческих задач, UX-прототипов и изучения мультимодальных AI-сценариев.
#ai #diffusers #imageediting #flux1 #huggingface
📌Код
📌 Веса
@data_analysis_ml
❤9👍5🔥4