Анализ данных (Data analysis)
45.2K subscribers
2.12K photos
232 videos
1 file
1.91K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Вышел PyTorch 2.5 🔥

Выпуск #PyTorch 2.5, в котором представлена новая серверная часть cuDNN для SDPA, компиляция torch.compile и ускорения производительности серверной части TorchInductor CPP

Все обновления можно найти здесь: https://pytorch.org/blog/pytorch2-5/

@data_analysis_ml
⚡️Torchcodec – универсальная библиотека PyTorch для быстрого и точного декодирования видео.

Инструмент позволяет преобразовывать видео в тензоры с помощью интуитивно понятных API, высокой производительности процессора / CUDA и богатого встроенного инструментария ML.

Torchcodec является самой производительной библиотекой одновременного декодирования большого количества видео в рамках конвейера загрузки обучающих данных.


from torchcodec.decoders import VideoDecoder
from torch import Tensor

decoder = VideoDecoder("my_video.mp4")

# Index based frame retrieval.
first_ten_frames: Tensor = decoder[10:]
last_ten_frames: Tensor = decoder[-10:]

# Multi-frame retrieval, index and time based.
frames = decoder.get_frames_at(indices=[10, 0, 15])


#PyTorch #opensource

Gtihub
Please open Telegram to view this post
VIEW IN TELEGRAM
⭐️ Anton Pidkuiko рассказывает, как он создал ИИ-агента, который занял первое место в Meta HackerCup 2024 (дивизион ИИ).

Он демонстрирует использование передовых методов рассуждений LLM, методов RAG и облачной инфраструктуры для решения сложных задач программирования в больших масштабах.

Посмотрите запись: https://www.youtube.com/watch?v=cvIeT4MlIx4

@data_analysis_ml

#pytorch #ai #expertexchange
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ Бесплатные полезные руководства по дистилляции моделей:

1. Руководство по дистилляции от OpenAI 🖥

Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.

Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.

- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.

- Создание обучающих данных для компактной модели:
Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.

- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.

🔗Ссылка

2. Учебник по дистилляции знаний от PyTorch 🔥

Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.

Основные аспекты руководства:

- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.

- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.

- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.

Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.

Ссылка

3. Jetson Introduction to Knowledge Distillation от Nvidia 🖥

В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.

Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.

Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.

🔗 Ссылка

4. Учебник по дистилляции знаний от Keras ⭐️

Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.

🔗Github
🔗Учебник Keras

5. Руководство по дистилляции от
huggingface
🤗

Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.

🔗 Ссылка

6. Дистилляция знаний для задач компьютерного зрения от huggingface 👁

Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.

🔗Ссылка

#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
📌 PyTorch: новые инструменты для для экономии памяти при обучении моделей.

PyTorch представил усовершенствованные методы Activation Checkpointing (AC), цель которых - снижение потребления памяти при обучении.

Традиционный подход в eager mode сохраняет промежуточные активации для обратного прохода, что зачастую приводит к значительному расходу ресурсов. AC позволяет не сохранять эти тензоры, а вычислять их заново при необходимости, тем самым жертвуя вычислительным временем ради экономии памяти.

Новая техника – Selective Activation Checkpoint (SAC). В отличие от обычного AC, который затрагивает всю выбранную область, SAC дает гранулярный контроль над тем, какие операции следует пересчитывать, а какие – сохранять. Это достигается за счет использования policy_fn, определяющей, нужно ли сохранять результаты конкретной операции. SAC будет полезен для избегания перевычисления ресурсоемких операций, например, матричных умножений.

Для torch.compile стала доступна Memory Budget API. Эта функция автоматически применяет SAC с оптимальной политикой, исходя из заданного пользователем бюджета памяти (от 0 до 1). Бюджет 0 соответствует обычному AC, а 1 – поведению torch.compile по умолчанию.

🔜 Читать подробную статью в блоге Pytorch


@ai_machinelearning_big_data

#AI #ML #Pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 PyTorch Distributed Checkpointing теперь поддерживает HuggingFace safetensors

📦 Что произошло:
Платформа DCP (Distributed Checkpointing) в PyTorch теперь встраивает нативную поддержку формата safetensors от HuggingFace. Это важный шаг к полной совместимости с экосистемой HF, которая активно используется в инференсе и дообучении.

🔍 В чём была проблема:
• DCP раньше использовал свой собственный формат чекпоинтов
• Чтобы работать с HuggingFace, приходилось писать конвертеры
• Чекпоинты приходилось загружать локально, что усложняло пайплайны

🚀 Что изменилось:
• Теперь можно сохранять и загружать модели напрямую в safetensors
• Поддерживается любой `fsspec`-совместимый storage (S3, GCS, локалка и т.д.)
• Интеграция уже улучшила UX в torchtune, став первым пользователем новой фичи

🛠 Как использовать:
• Просто передай новый load planner и storage reader в load()
• И аналогично — save planner + writer для save()
• Всё остальное работает как раньше

📈 Что это даёт:
• Меньше костылей и меньше кода
• Единый формат чекпоинтов для HF и PyTorch
• Более гибкие и производительные пайплайны

#PyTorch #HuggingFace #safetensors #ML #checkpointing #opensource

https://pytorch.org/blog/huggingface-safetensors-support-in-pytorch-distributed-checkpointing

@data_analysis_ml