Анализ данных (Data analysis)
45.2K subscribers
2.12K photos
232 videos
1 file
1.91K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
🌟 Dolphin-2.9.3-Yi-1.5: квантизированные GGUF версии с 34B параметрами и контекстным окном 32k.

На Huffingface пользователь bartowski опубликовал несколько квантизированных версий с разной степенью сжатия,
Размерность моделей: от IQ2_XS (10.3 Gb) до Q8_0_L (37.4GB), рекомендуемая — Q6_K.

Семейство Dolfin основано на моделях Yi и распространяется по лицензии Аpache 2.0
Dolphin-2.9.3 обладает разнообразными навыками следования инструкциям, общения и программирования. Она также имеет начальные агентные способности и поддерживает вызов функций.
Модель не имеет цензуры. Создатели отфильтровали набор данных, чтобы удалить выравнивание и предвзятость. Dolphin обучался на данных, полученных из GPT4, среди других моделей.

🤗 Hugging Face

@data_analysis_ml

#LLM #ML #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 SmolVLM: набор компактных VLM от HuggingFace - Base, Synthetic и Instruct.

SmolVLM - серия компактных VLM отличающихся высокой эффективностью использования памяти и могут быть развернуты на локальных устройствах с ограниченными ресурсами.

Только что были выпущены SmolVLM (256M и 500M), которым требуются GPU <1GB для запуска.

🤗 SmolVLM-256M – это cамая маленькая VLM в мире!

Модели настолько маленькт, что могут работать 100% локально в вашем браузере на WebGPU!

📌Лицензирование:  Apache 2.0

⭐️ Smolervlm: https://huggingface.co/blog/smolervlm
🤗 Модели: https://huggingface.co/collections/HuggingFaceTB/smolvlm-256m-and-500m-6791fafc5bb0ab8acc960fb0

@ai_machinelearning_big_data


#AI #ML #SmallVLM #Huggingface
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ Бесплатные полезные руководства по дистилляции моделей:

1. Руководство по дистилляции от OpenAI 🖥

Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.

Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.

- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.

- Создание обучающих данных для компактной модели:
Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.

- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.

🔗Ссылка

2. Учебник по дистилляции знаний от PyTorch 🔥

Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.

Основные аспекты руководства:

- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.

- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.

- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.

Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.

Ссылка

3. Jetson Introduction to Knowledge Distillation от Nvidia 🖥

В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.

Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.

Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.

🔗 Ссылка

4. Учебник по дистилляции знаний от Keras ⭐️

Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.

🔗Github
🔗Учебник Keras

5. Руководство по дистилляции от
huggingface 🤗

Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.

🔗 Ссылка

6. Дистилляция знаний для задач компьютерного зрения от huggingface 👁

Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.

🔗Ссылка

#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
📌 72B слишком много для VLM? А 7B параметров недостаточно!

QWEN только что выпустили новую модель на 32B параметров, Qwen2.5-VL-32B-Instruct.

Эта модель представляет собой значительный прогресс для своего размера. И что самое лучшее, она лицензирована Apache 2.

Модель выдает более подробные и структурированный ответы.

💡 Детальное понимание: превосходные возможности анализа изображений и визуальной логической дедукции.

📊 Превосходит сопоставимые модели, такие как Mistral-Small-3.1-24B и Gemma-3-27B-IT.

🚀 В нескольких тестах даже превосходит более крупный Qwen2-VL-72B-Instruct.

Еще один крутой релиз понедельника!

🟢Блог: https://qwenlm.github.io/blog/qwen2.5-vl-32b/
🟢Попробовать: https://chat.qwen.ai
ВЧ: https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
🟢Модель: https://modelscope.cn/models/Qwen/Qwen2.5-VL-32B-Instruct

@ai_machinelearning_big_data


#AI #ML #LLM #Dataset #HuggingFace
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🔥 ​Hugging Face выпустила версию 0.30.0 библиотеки huggingface_hub - это самое крупное обновление за два года!

Представлены значительные улучшения, особенно в области хранения и обработки больших моделей и датасетов.​

✔️ Основные нововведения:

Интеграция с Xet: Внедрена поддержка Xet — передового протокола для хранения крупных объектов в Git-репозиториях, призванного заменить Git LFS.

В отличие от LFS, который выполняет дедупликацию на уровне файлов, Xet работает на уровне фрагментов данных, что особенно полезно для специалистов, работающих с массивными моделями и датасетами.

Для интеграции с Python используется пакет xet-core, написанный на Rust, который обрабатывает все низкоуровневые детали.​

Чтобы начать использовать Xet, установите дополнительную зависимость:​
pip install -U huggingface_hub[hf_xet]

После установки вы сможете загружать файлы из репозиториев, поддерживающих Xet.​

Доплнительно:
😶 Расширен InferenceClient:
😶 Добавлена поддержка новых провайдеров для инференса: Cerebras и Cohere.
😶 Внедрены асинхронные вызовы для задач инференса (например, text-to-video), что повышает стабильность и удобство работы.
😶 Улучшен CLI
😶 Команда huggingface-cli upload теперь поддерживает wildcards (шаблоны) прямо в пути к файлам (например, huggingface-cli upload my-model *.safetensors вместо опции --include).
😶 Команда huggingface-cli delete-cache получила опцию --sort для сортировки кэшированных репозиториев (например, по размеру: --sort=size).

✔️ Полный список обновлений
✔️Блог
✔️Документация по Xet

@ai_machinelearning_big_data


#huggingface #release #xet
Please open Telegram to view this post
VIEW IN TELEGRAM
🩺 Google выпустила MedGemma — открытые модели ИИ для медицины

На Hugging Face вышла коллекция MedGemma, созданная Google на базе Gemma 3 специально для медицинских задач. Это мощные модели, способные анализировать как текст, так и медицинские изображения — от рентгена до дерматологии.

📦 В коллекции:
medgemma-4b-it — мультимодальная модель (текст + изображения)
medgemma-4b-pt — предварительно обученная версия
medgemma-27b-text-it — огромная текстовая модель для клинической документации

🔍 Что умеют:
Обнаружение патологий на рентген-снимках
Ответы на медицинские вопросы (VQA)
Генерация медицинских отчётов
Обработка клинических заметок, триажа, историй болезни

📊 Бенчмарки:
• CheXpert F1 (Top‑5): 48.1 vs 31.2 у базовой
• DermMCQA точность: 71.8%
• VQA‑Rad F1: 49.9

🧪 Пример использования:

from transformers import pipeline
pipe = pipeline("image-text-to-text", model="google/medgemma-4b-it")


🔗 Hugging Face: https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4

📝 Лицензия: Apache 2.0 (с медицинским соглашением)

#MedGemma #GoogleAI #Gemma3 #HealthcareAI #RadiologyAI #MedicalAI #OpenSourceAI #HuggingFace
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Теперь можно запускать модели Hugging Face прямо в Google Colab — бесплатно!

Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.

Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций


💡 Бонус для разработчиков:

Добавь файл notebook.ipynb в свой репозиторий модели — и Hugging Face автоматически подхватит его.
Пользователи смогут запускать твой пример сразу, без копирования кода!

🔥 Работает с Google Colab — бесплатно, быстро, удобно.

#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning

✔️ Подробнее

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 PyTorch Distributed Checkpointing теперь поддерживает HuggingFace safetensors

📦 Что произошло:
Платформа DCP (Distributed Checkpointing) в PyTorch теперь встраивает нативную поддержку формата safetensors от HuggingFace. Это важный шаг к полной совместимости с экосистемой HF, которая активно используется в инференсе и дообучении.

🔍 В чём была проблема:
• DCP раньше использовал свой собственный формат чекпоинтов
• Чтобы работать с HuggingFace, приходилось писать конвертеры
• Чекпоинты приходилось загружать локально, что усложняло пайплайны

🚀 Что изменилось:
• Теперь можно сохранять и загружать модели напрямую в safetensors
• Поддерживается любой `fsspec`-совместимый storage (S3, GCS, локалка и т.д.)
• Интеграция уже улучшила UX в torchtune, став первым пользователем новой фичи

🛠 Как использовать:
• Просто передай новый load planner и storage reader в load()
• И аналогично — save planner + writer для save()
• Всё остальное работает как раньше

📈 Что это даёт:
• Меньше костылей и меньше кода
• Единый формат чекпоинтов для HF и PyTorch
• Более гибкие и производительные пайплайны

#PyTorch #HuggingFace #safetensors #ML #checkpointing #opensource

https://pytorch.org/blog/huggingface-safetensors-support-in-pytorch-distributed-checkpointing

@data_analysis_ml