Анализ данных (Data analysis)
45.2K subscribers
2.12K photos
232 videos
1 file
1.91K links
Data science, наука о данных.

@haarrp - админ

@itchannels_telegram - 🔥 главное в ит

@ai_machinelearning_big_data - ML

@machinelearning_interview - вопросы с собесдований по Ml

РКН: clck.ru/3FmyAp
Download Telegram
Forwarded from Machinelearning
🌟 Atropos: тренажерный зал для RL языковых моделей.

Atropos от NousResearch - это гибкий фреймворк для асинхронного управления RL-средами. Его архитектура построена так, чтобы максимизировать эффективность даже в распределенных системах, будь то локальный кластер или облако.

Atropos поддерживает децентрализацию. Он позволяет запускать несколько экземпляров сред (от статических датасетов, интерактивных игр, RLAIF и RLHF до обучения сложным многоэтапным взаимодействиям), которые асинхронно передают данные в центральный узел.

Это избавляет от простоя ресурсов, когда обновления политики модели тормозят из-за ожидания результатов всех окружений. Под капотом — интеграция с любыми API (OpenAI, vLLM, SGLang), позволяя свободу выбора LLM-провайдера без переписывания кода.

Практическая польза протестирована в экспериментах:

🟢В задачах параллельного вызова функций точность тестовой модели DeepHermes Tool Calling Specialist выросла в 4,6 раза — с 10% до 46%.

🟢В прогнозировании финансовых показателей на модели DeepHermes Financial Fundamentals Prediction Specialist, RL через Atropos удвоил точность (с 20% до 50%).

Такие результаты достигнуты благодаря многозадачности: фреймворк одновременно управляет разными типами сред, объединяя их в единый тренировочный поток. Вы можете обучать модель на статических данных утром и переключаться на интерактивные игры вечером, не меняя инфраструктуру.

Для разработчиков Atropos предлагает готовые инструменты: от датасетов для тонкой настройки (SFT, DPO) до дебаггеров и визуализации.

Atropos не привязывает вас к конкретному алгоритму RL или инфраструктуре. Запустите 10 экземпляров на ноутбуке или 10 000 через Slurm — фреймворк равномерно распределит нагрузку. Это особенно ценно для исследований: можно быстро экспериментировать с разными подходами, не тратя недели на настройку пайплайнов.

В репозитории есть все, что нужно: коллекция готовых к использованию сред RL, библиотека с базовыми классами и утилитами и примеры конфигураций обучения.

Если хотите понять, как ускорить свои эксперименты с LLM - загляните в документацию проекта, возможно, это именно тот инструмент, который избавит вас от боли асинхронной координации.


📌Лицензирование: MIT License.


🟡Статья
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #RL #Framework #NousResearch #Atropos
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 LTX-Video 13B — один из самых мощных open-source видеогенераторов.

Разработчики внедрили в модель мультимасштабный рендеринг.

Обычные генеративные модели видео рендерят всё изображение целиком, одним разрешением.
Когда в сцене много движущихся объектов или деталей, модель может "размазать" их, потерять чёткость или неправильно совместить фон и передний план.

📝 А мультимасштабный рендеринг — это параллельная отрисовка картинки на разных уровнях детализации:

один поток отвечает за фон (низкая детализация, большой масштаб),

другой — за объекты в центре, движущиеся элементы (высокая детализация, малый масштаб).

Потом всё объединяется в один кадр, как слои в Photoshop.

🎯 Зачем это нужно?

Фон остаётся стабильным, не "дергается"

Движущиеся объекты остаются чёткими и отдельными от фона

Картинка в целом не разваливается (нет смешивания движений, артефактов)

Такой подход помогает удерживать высокое качество картинки даже при сложном движении — например, если в кадре бежит персонаж на фоне движущегося города.

👉 По сути, это умное раздельное внимание к разным частям кадра, чтобы не терять детали ни в статике, ни в движении.

Что нового?

Модель 13 миллиардов параметров
Multiscale rendering → больше деталей, чётче текстуры
Лучше понимает движение и сцену
– Запускается локально на GPU
– Поддержка keyframes, движения камеры/персонажей, мультисценных секвенций

Запускается даже на RTX 4090.

#AI #videoAI #ltxvideo #deeplearning #generativeAI #opensource #videogeneration

Попробовать можно тутhttps://app.ltx.studio/ltx-video
Codehttps://github.com/Lightricks/LTX-Video
Weightshttps://huggingface.co/Lightricks/LTX-Video
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ NVIDIA поставит в Саудовскую Аравию 18 000 топовых чипов для ИИ.

NVIDIA отправит более 18 000 флагманских Blackwell GB300 в саудовскую компанию-стартап Humain, заявил CEO Джeнсeн Хуанг на инвестиционном форуме в Эр-Рияде. Эти чипы, одни из самых мощных в мире, будут работать в дата-центрах суммарной мощностью 500 мегаватт, помогая строить ИИ-инфраструктуру страны.

Humain, принадлежащая местному суверенному фонду, позже задействует «сотни тысяч» GPU. AMD тоже участвует в проекте, и тоже поставит свои чипы для аналогичной инфраструктуры на $10 млрд.
cnbc.com

✔️ Audible внедряет ИИ для создания аудиокниг.

Audible объявил о внедрении полного цикла производства аудиокниг на основе ИИ — от перевода до озвучки. В ближайшие месяцы сервис предложит более 100 синтезированных голосов на английском, испанском, французском и итальянском языках с акцентами и диалектами.

Технология поддерживает два варианта перевода: текст-текст (с последующей озвучкой) и речь-речь, сохраняющую стиль оригинального чтеца. Для точности перевода доступна проверка профессиональными лингвистами. Первые тесты перевода стартуют этой осенью.
thebookseller.com

✔️ Tencent CodeBuddy: ИИ-ассистент для программистов.

Tencent запустил CodeBuddy, инструмент, который может стать конкурентом Cursor. Он поддерживает автодополнение кода, диагностику ошибок, рефакторинг, написание тестов и ревью, а также работает с экосистемой WeChat.

Особенность сервиса - режим Craft: ИИ понимает задачи на естественном языке и генерирует проекты из нескольких файлов. CodeBuddy поддерживает MCP-протокол, позволяя интегрировать сторонние инструменты без лишних телодвижений. В основе — модели DeepSeek V3 и HunYuan Turbo S, доступные бесплатно. Инструмент совместим с VSCode, Jetbrains и другими IDE.
copilot.tencent.com

✔️ Intel Arc B580 может получить уникальную версию с двумя GPU и 48 ГБ памяти.

Портал videocardz поделился слухами о том, что один из партнеров Intel разрабатывает двухчиповую версию видеокарты Arc B580 с суммарными 48 ГБ видеопамяти. По данным неназванного источника, устройство получит нестандартный дизайн, а его анонс запланирован на ближайшую неделю. Хотя точный бренд пока не называется, известно, что проект не является официальной разработкой Intel и находится под NDA.

При этом, обычная версия B580 с 24 ГБ задерживается на несколько месяцев и есть вероятность, что это связано с "мистической" 48 ГБ-версией. Если информация подтвердится, это станет редким случаем десктопного двухчипового решения в эпоху монопольных GPU. Ждем подробностей на Computex.
videocardz.com

✔️ Утечка системного промпта Claude взбудоражила ИИ-сообщество.

Системный промпт Claude, описывающий поведение модели и ее инструменты, слили в сеть — 16,7 тыс. слов и 24 тыс. токенов. Документ раскрывает детали от формата ответов до методов решения задач, например, как считать буквы в слове «strawberry». В сравнении с 2,2 тыс. словами у OpenAI он гигантский. Большая часть текста посвящена интеграции с MCP-сервером, поисковыми правилами и «горячими исправлениями» для данных после 2024 года.

Andrej Karpathy назвал утечку поводом обсудить новую парадигму обучения ИИ: вместо тонкой настройки весов модели он предложил редактировать промпты вручную, как человек использует заметки. Это должно помочь ИИ запоминать стратегии и адаптироваться к контексту. Однако критики возражают: автономные подсказки могут запутать модель, а без постоянного обучения эффект будет краткосрочным.
news.ycombinator.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Skywork.ai — первый в мире AI-офис с глубоким исследованием (DeepResearch)

Стартап Skywork.ai запустился глобально и представил уникальное решение — интеллектуальную рабочую среду, в которую встроены «суперагенты» на базе AI. Они умеют проводить глубокий анализ данных и создавать документы, таблицы, презентации и даже подкасты — буквально по одному запросу.

🔍 Что такое Skywork.ai:

📄 Docs — пишет отчёты, статьи и обзоры, подкреплённые фактами и источниками
📊 Sheets — строит таблицы, графики и проводит анализ данных
📽️ Slides — делает готовые презентации с дизайном
🌐 Webpages & Podcasts — создаёт веб-контент и аудио на основе анализа
🧠 General — универсальный агент: понимает тексты, изображения, видео и музыку

🧠 Главное отличие — DeepResearch

Это не просто генерация текста. Skywork.ai:
- Понимает контекст
- Уточняет, что вы хотите (с помощью формы Clarification Card)
- Показывает источники информации прямо в тексте
- Делает выводы на основе проверенных данных

🎯 Преимущества:

Создаёт отчёты и презентации за минуты
Все факты подтверждены источниками
Можно экспортировать в PDF, Excel, PowerPoint
Работает с текстом, таблицами, аудио, видео
Подходит для аналитиков, маркетологов, исследователей, авторов

💸 Цена — от $19.99 в месяц. Уже доступно по всему миру, без инвайтов.

📌 Попробовать просто:
1. Зарегистрируйтесь на [skywork.ai](https://skywork.ai)
2. Введите свой запрос (например: «Сделай отчёт по рынку генеративного ИИ»)
3. Уточните цели через форму Clarification Card
4. Получите готовый документ, графики или презентацию

Skywork Super Agents доступен как онлайн сервис (стоимость от $20/мес., есть пробный период), а для разработчиков открыли исходники фреймворка DeepResearch и API для вызова агентов по выбору.
globenewswire.com

#AI #SkyworkAI #DeepResearch #productivity #документы #презентации #таблицы
Forwarded from Machinelearning
🌟 Hunyuan Video Avatar: видео-аватары с контролем эмоций.

Вслед за релизом Hunyuan Portrait, Tencent выпустила Hunyuan Video Avatar - систему на базе MM-DiT для генерации динамичных видео из изображения с одним или несколькими персонажами, синхронизированных с аудио.

Объединить такие возможности было непростой задачей, это стало возможным благодаря использованию ключевых для Hunyuan Video Avatar методов:

🟢Сharacter image injection module - отвечает за то, чтобы "оживший" персонаж на видео оставался очень похожим на того, кто был на исходной фотографии. Он следит, чтобы черты лица, прическа, общие контуры не искажались и персонаж был узнаваем на протяжении всего ролика, а его движения были естественными.

🟢Audio Emotion Module (AEM) - контролирует соответствие эмоций на лице голосу из аудиоисточника, чтобы выражение лица персонажа на видео точно совпадало с эмоциональной окраской звуковой дорожки.

🟢Face-Aware Audio Adapter (FAA) - помогает "понять", к какому именно лицу в данный момент относится звучащая речь. Он как бы надевает "умную маску" на лицо нужного персонажа, чтобы только его мимика оживала в ответ на конкретную аудиодорожку.

По сравнительных тестах с Sonic, EchoMimic, EchoMimicV2 и Hallo-3 на датасетах для портретной анимации (HDTF, CelebV-HQ и свой приватный сет) Hunyuan Video Avatar показал лучшие результаты: 3,99 в метриках качества видео (IQA), 2,54 по эстетике (ASE), 5,30 в синхронизации аудио и видео (Sync-C), 38.01 в точности воспроизведения видео (FID) и 358.71 по искажениям (FVD).

При тестировании полнокадровой анимации на собственном датасете HunyuanVideo-Avatar показал лучшие результаты по IQA (4.66), ASE (3.03) и Sync-C (5.56) в сравнении с Hallo3, FantasyTalking и OmniHuman-1.

⚠️ Модель прожорливая: минимум 24 ГБ VRAM для 704x768, а для плавного 4K рекомендуют GPU на 96 ГБ.

Зато входные изображения берет любые: фотореалистичные портреты, 3D-модели, аниме-персонажи — хоть лису в костюме. Разрешение тоже гибкое: от крупных планов до полноростовых.

▶️В репозитории проекта на Github есть несколько скриптов в помощь для запуска: для low VRAM, инференса на одном GPU , для multi-GPU и запуска с WebUI на базе Gradio. Адаптация к среде ComfyUI - в планах.


🟡Страница проекта
🟡Модели
🟡Arxiv
🟡Demo (китайский язык)
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #HunyuanAvatar
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🤖 best-of-robot-simulators: крупнейший рейтинг симуляторов для робототехники

Проект — это автоматизированная и регулярно обновляемая подборка лучших симуляторов для робототехники на GitHub. Это must-have для всех, кто работает с моделированием и тестированием роботов в виртуальной среде.

🧩 Что внутри:
● 120+ симуляторов в 10 категориях
● Более 300 000 звёзд в сумме
● Автоматическая сортировка по GitHub-метрикам: звёзды, форки, активность
● Обновляется каждую среду

📂 Категории симуляторов:
• Generic Robotics
• Aerial (дроны)
• Maritime (морская робототехника)
• Space
• Domain Specific
• Game engines
AI-training
• Rendering
• Physics engines
• 2D Simulators

🔍 Примеры известных фреймворков:
• Gazebo, Webots, Isaac Sim, MuJoCo, AirSim, PyBullet

🛠 Полезно для:
• Разработчиков и исследователей
• Студентов робототехники
• Команд, выбирающих движок под проект
• Энтузиастов AI/симуляции

📎 Лицензия: CC-BY-SA 4.0

🌐 Репозиторий

#robotics #AI #simulation #opensource #gazebo #webots #isaacsim #mujoco
✔️ 13 полезных MCP-серверов, которые стоит попробовать

MCP (Model Context Protocol) меняет то, как ИИ-модели и агенты взаимодействуют с инструментами.

1. Agentset MCP
🔗 https://github.com/agentset-ai/mcp-server
Быстрое создание интеллектуальных приложений на основе документов (RAG) с open-source платформой Agentset.

2. GitHub MCP Server
🔗 https://github.com/github/github-mcp-server
Интеграция с API GitHub — можно строить ИИ-инструменты, работающие с экосистемой GitHub.

3. arXiv MCP
🔗 https://github.com/andybrandt/mcp-simple-arxiv
Работа с научными статьями arXiv: поиск, метаданные, аннотации, ссылки — всё через MCP.

4. MCP Run Python
🔗 https://github.com/pydantic/pydantic-ai/tree/main/mcp-run-python
Запуск Python-кода в песочнице через Pyodide (Deno). Полная изоляция от ОС.

5. Safe Local Python Executor
🔗 https://github.com/maxim-saplin/mcp_safe_local_python_executor
Безопасный локальный запуск Python-кода, сгенерированного LLM, через LocalPythonExecutor (от smolagents).

6. Cursor MCP Installer
🔗 https://github.com/matthewdcage/cursor-mcp-installer
Автоматическое добавление MCP-серверов в редактор Cursor — удобно для разработчиков.

7. Basic Memory
🔗 https://memory.basicmachines.co/docs/introduction
Система управления знаниями: создаёт устойчивый семантический граф из диалогов ИИ-агентов.

8. Filesystem MCP Server
🔗 https://github.com/modelcontextprotocol/servers/tree/HEAD/src/filesystem
Чтение, запись, поиск файлов, создание, удаление и перемещение директорий — всё через MCP.

9. Notion MCP Server
🔗 https://github.com/makenotion/notion-mcp-server
Позволяет моделям управлять вашим рабочим пространством в Notion: поиск, чтение, создание и обновление страниц и баз.

10. Markdownify MCP Server
🔗 https://github.com/zcaceres/markdownify-mcp
Конвертирует PDF, изображения, аудио и веб-страницы в Markdown.

11. Fetch MCP Server
🔗 https://github.com/modelcontextprotocol/servers/tree/main/src/fetch
Позволяет LLM извлекать данные с веб-страниц и автоматически преобразовывать HTML в Markdown.

12. Mobile Next MCP Server
🔗 https://github.com/mobile-next/mobile-mcp
Взаимодействие с iOS/Android-приложениями: распознавание UI по скриншотам, автоматизация кликов.

13. MCP Installer
🔗 https://github.com/anaisbetts/mcp-installer
Шутливо, но по делу: «MCP для установки MCP». Модель сама ставит MCP-серверы из npm и PyPi по вашему запросу.

🧠 Вывод:
MCP-серверы — это мост между LLM и реальными действиями: код, браузер, мобильные приложения, знания, GitHub, файлы.
Их можно комбинировать в цепочки, расширять ассистентов, строить автономные агенты.

@data_analysis_ml

#ml #ai #MCP
Please open Telegram to view this post
VIEW IN TELEGRAM
🎥 Video-XL-2 — модель для понимании длинных видео

Многие модели хорошо справляются с бенчмарками, но начинают "захлёбываться", когда ролики становятся длиннее. Video-XL-2 создана, чтобы работать быстро и эффективно с длинными видео, не теряя в качестве.

🔑 Ключевые особенности:
Высокая скорость + низкое потребление памяти
🎯 SOTA-показатели среди open-source моделей с аналогичным размером
🔁 Поддержка до 10 000+ кадров на одной GPU
🧩 Инновации в архитектуре: chunk-based pre-filling и выборочное KV-декодирование

📊 Результаты на бенчмарках:
• MLVU — 74.9
• VideoMME — 66.4
• LVBench — 48.6
При этом модель использует меньше FLOPs, чем конкуренты, даже на больших входных данных — это говорит об отличной энергоэффективности.

🧪 Хорошо справляется с задачами:
– Понимание длинных видеороликов
– Поиск по видео
– Временная локализация событий (Temporal Grounding)

📎 Подробнее и демо

@data_analysis_ml

#AI #VideoUnderstanding #ML #LLM #Multimodal #BAAI
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Теперь можно запускать модели Hugging Face прямо в Google Colab — бесплатно!

Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.

Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций


💡 Бонус для разработчиков:

Добавь файл notebook.ipynb в свой репозиторий модели — и Hugging Face автоматически подхватит его.
Пользователи смогут запускать твой пример сразу, без копирования кода!

🔥 Работает с Google Colab — бесплатно, быстро, удобно.

#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning

✔️ Подробнее

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 MiniCPM4 — компактная LLM нового поколения

Модель от OpenBMB, которая работает в 5 раз быстрее на конечных устройствах. Отлично подходит для edge-решений и встраивания.

🔧 Что нового:

🏗️ InfLLM v2 — обучаемое разреженное внимание
🧠 Model Wind Tunnel 2.0 — масштабирование с предсказуемой эффективностью
🔢 BitCPM — ультракомпактная тернарная квантизация
📚 UltraClean + UltraChat v2 — чистые датасеты для преобучения и fine-tuning
CPM.cu + ArkInfer — лёгкий фреймворк для быстрого инференса на GPU и в проде

📖 Technical Report: https://github.com/OpenBMB/MiniCPM/blob/main/report/MiniCPM_4_Technical_Report.pdf
🤗 Models: https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b
GitHub: https://github.com/OpenBMB/MiniCPM

@data_analysis_ml

#LLM #AI #MiniCPM4 #EdgeAI
🍏Иллюзия мышления: понимание сильных и слабых сторон моделей рассуждения через призму сложности задач

Apple внезапно опубликовала исследование, которое разоблачает популярные LLM с "цепочкой размышлений" (Chain-of-Thought) — такие как Gemini 2.5 Pro, OpenAI o3 и DeepSeek R1.

📌 Что тестировали?
Логические задачи:
• башни Ханоя (100+ шагов!)
• загадка про волка, козу и капусту
• головоломки с правилами и условиями

И всё это — с усложнением.

💥 Результаты:

🔁 Модели не думают, а вспоминают
Они не решают задачу шаг за шагом, а ищут похожие примеры в своей базе знаний. Это имитация мышления, а не само мышление.

🤯 "Переосмысление" вредит
Если задача простая, модель находит верный ответ — и… продолжает «думать» дальше, усложняя всё и случайно портя решение.

🧠 Больше размышлений ≠ лучше результат
Дать больше токенов и времени на размышления не помогает. На сложных задачах модели просто сдаются быстрее. Даже "бесконечный" бюджет не спасает.

🧪 Few-shot примеры не работают
Даже если расписать пошаговое решение и дать примеры — модель всё равно ломается, если задача ей незнакома.

🏗 Модели обожают Ханой, но ненавидят загадки
Башни Ханоя решаются идеально даже на 100+ шагов.
А вот в простой задаче с козой и капустой — модели сдаются на 4-м шаге. Почему? Ханой — в датасетах, загадки про реку — нет.

🧠 Почему LLM не справляются с Ханойскими башнаями при большом числе дисков

Модели вроде Sonnet 3.7, DeepSeek R1 и o3-mini не могут правильно решать башни Ханоя, если дисков больше 13 — и вот почему:

📏 Немного математики:

• Чтобы решить башни Ханоя, нужно минимум 2ⁿ − 1 ходов
• Один ход — это примерно 10 токенов (формат: «переместить диск X с A на B»)
• А значит, для 15 дисков нужно ~**327,670 токенов** только на вывод шагов


🧱 Лимиты моделей:

| Модель | Лимит токенов | Макс. число дисков (без размышлений) |
|--------------|----------------|---------------------------------------|
| DeepSeek R1 | 64k | 12
| o3-mini | 100k | 13
| Sonnet 3.7 | 128k | 13

И это без учёта reasoning (внутренних размышлений), которые модель делает перед финальным ответом.


🔍 Что реально происходит:

• Модели не могут вывести все шаги, если дисков слишком много
• При >13 дисках они просто пишут что-то вроде:
> *"Из-за большого количества шагов я опишу метод, а не приведу все 32 767 действий..."*

• Некоторые модели (например, Sonnet) перестают "думать" уже после 7 дисков — они просто описывают алгоритм и переходят к финальному ответу без вычислений

🎲 А теперь представим, что модель угадывает каждый шаг с точностью 99.99%
На задаче с 15 дисками (32767 ходов) ошибка почти неизбежна — чистая математика:
даже 0.01% ошибок на токенах *экспоненциально* накапливаются

🍏 Интересно, что Apple выпустила это исследование за день до WWDC 2025.
Подколка конкурентам? А завтра, может, и своё покажут. 🤔

📎 Исследование: https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf

@data_analysis_ml

#AI #LLM #AGI #Apple #WWDC2025 #PromptEngineering #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
⚡️ Mistral выпустила ризонинг-модель Magistral.

Magistral — первая модель рассуждений от Mistral AI. Она сочетает глубокую логическую обработку с возможностью отслеживать каждый шаг её «мышления».

Модель получила поддержку 8 языков, включая русский и выпущена в 2 вариантах:

🟢опенсорсный Magistral Small с 24 млрд. параметров;

🟠корпоративный Magistral Medium.

Внутри Magistral работает в режиме рассуждений, разбивая задачи на цепочки логических шагов, а Flash Answers ускоряет вывод в 10 раз по сравнению с конкурентами. Для интеграции в рабочие процессы модель умеет взаимодействовать с внешними инструментами (API или базами данных).

В тестах Magistral Medium показал 73,6% точности на задачах AIME2024, демонстрируя силу в физических симуляциях и математических расчетах.

Для разработчиков доступны версии на Hugging Face, AWS и IBM WatsonX, а в будущем — на Azure и Google Cloud. Демо Magistral доступно в интерфейсе Le Chat или по API в La Plateforme.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Модель
🟡Техотчет
🟡Web Demo


@ai_machinelearning_big_data

#AI #ML #LLM #Magistral #MistralAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
🔥 Manus Chat Mode — бесплатно и без ограничений для всех.

💬 Работает супер быстро прямо в чате.

🚀 Так же доступен Agent Mode с расширенными возможностями.

От простых вопросов до сложных задач — всё в одном окне : https://manus.im/

@ai_machinelearning_big_data

#news #ai #ml #manus