This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Cua — лёгкий open-source агентный фреймворк на Python
Cua — это минималистичный Python-фреймворк для создания LLM-агентов, ориентированный на простоту, прозрачность и модульность. Название «Cua» расшифровывается как Composable Universal Agents.
📦 Особенности:
• Всего ~1,000 строк кода — легко читать, расширять и встраивать
• Поддержка OpenAI, Anthropic, Mistral и других LLM-провайдеров
• Нативные компоненты: агент, память, инструменты, цепочки
• Интерфейс совместим с
🚀 Что можно делать:
• Создавать собственных агентов и наделять их инструментами
• Интегрировать внешние API и базы данных
• Вести диалоги, обрабатывать документы, выполнять цепочки задач
• Быстро запускать эксперименты с собственными LLM-пайплайнами
🛠 Примеры в репозитории:
- Агент с памятью и функцией поиска
- Диалоговый бот с цепочкой инструкций
- Генерация кода на основе естественного языка
- Интеграция с HuggingFace и другими API
📚 Для кого подойдёт:
• Тем, кто ищет простой аналог LangChain
• Исследователям, которым нужно прозрачное поведение без «магии»
• Разработчикам, экспериментирующим с LLM-агентами
🔗 GitHub
Cua — это минималистичный Python-фреймворк для создания LLM-агентов, ориентированный на простоту, прозрачность и модульность. Название «Cua» расшифровывается как Composable Universal Agents.
📦 Особенности:
• Всего ~1,000 строк кода — легко читать, расширять и встраивать
• Поддержка OpenAI, Anthropic, Mistral и других LLM-провайдеров
• Нативные компоненты: агент, память, инструменты, цепочки
• Интерфейс совместим с
langchain
и autogen
, но гораздо проще🚀 Что можно делать:
• Создавать собственных агентов и наделять их инструментами
• Интегрировать внешние API и базы данных
• Вести диалоги, обрабатывать документы, выполнять цепочки задач
• Быстро запускать эксперименты с собственными LLM-пайплайнами
🛠 Примеры в репозитории:
- Агент с памятью и функцией поиска
- Диалоговый бот с цепочкой инструкций
- Генерация кода на основе естественного языка
- Интеграция с HuggingFace и другими API
📚 Для кого подойдёт:
• Тем, кто ищет простой аналог LangChain
• Исследователям, которым нужно прозрачное поведение без «магии»
• Разработчикам, экспериментирующим с LLM-агентами
🔗 GitHub
Цена доставки изменилась за 3 минуты? Это не магия. Это Switcher
⏳ Как платформы влияют на нашу готовность платить?
📦 Что происходит «под капотом» Авито-доставки?
🧩 И как собрать ценообразование, когда пользователей — миллионы?
В кресле — Даша Пучкова, старший аналитик команды ценообразования доставки.
В фокусе — логика, данные и неожиданные эффекты от алгоритмов.
В голове — баланс между оптимизацией и пользовательским доверием.
Смотреть второй выпуск → по ссылке.
⏳ Как платформы влияют на нашу готовность платить?
📦 Что происходит «под капотом» Авито-доставки?
🧩 И как собрать ценообразование, когда пользователей — миллионы?
В кресле — Даша Пучкова, старший аналитик команды ценообразования доставки.
В фокусе — логика, данные и неожиданные эффекты от алгоритмов.
В голове — баланс между оптимизацией и пользовательским доверием.
Смотреть второй выпуск → по ссылке.
🤖 Eso-LMs — новая архитектура языковых моделей, объединяющая лучшее из autoregressive и diffusion-подходов
Исследователи представили Eso-LMs (Esoteric Language Models) — модель, которая совмещает два разных способа генерации текста:
🔹 Autoregressive (AR) — как GPT: генерирует токен за токеном
🔹 MDM (Masked Diffusion Models) — как диффузионные модели, восстанавливающие текст пошагово
Обычно эти подходы несовместимы, но Eso-LMs объединяет их с помощью:
- нового attention-механизма, который работает и для AR, и для MDM
- гибридной функции потерь, позволяющей переключаться между стилями генерации
💡 Что делает Eso-LMs уникальной:
⚡ В 65 раз быстрее, чем обычные diffusion-модели
⚡ В 4 раза быстрее, чем гибридные модели с KV-кэшем
📈 Генерирует качественный текст с низкой perplexity
💬 Умеет работать параллельно и быстро, без потерь в смысле
📦 Что внутри репозитория:
• Два варианта модели: Eso-LM (A) и Eso-LM (B)
• Поддержка разных архитектур: DiT, AR-трансформеры и др.
• Скрипты для обучения, оценки и генерации текстов
• Настройки, логи, загрузка данных и прочая инфраструктура
🛠 Это не просто ещё одна LLM — это попытка соединить два мира генерации текста и ускорить inference без потери качества.
🔗 Подробнее
Исследователи представили Eso-LMs (Esoteric Language Models) — модель, которая совмещает два разных способа генерации текста:
🔹 Autoregressive (AR) — как GPT: генерирует токен за токеном
🔹 MDM (Masked Diffusion Models) — как диффузионные модели, восстанавливающие текст пошагово
Обычно эти подходы несовместимы, но Eso-LMs объединяет их с помощью:
- нового attention-механизма, который работает и для AR, и для MDM
- гибридной функции потерь, позволяющей переключаться между стилями генерации
💡 Что делает Eso-LMs уникальной:
⚡ В 65 раз быстрее, чем обычные diffusion-модели
⚡ В 4 раза быстрее, чем гибридные модели с KV-кэшем
📈 Генерирует качественный текст с низкой perplexity
💬 Умеет работать параллельно и быстро, без потерь в смысле
📦 Что внутри репозитория:
• Два варианта модели: Eso-LM (A) и Eso-LM (B)
• Поддержка разных архитектур: DiT, AR-трансформеры и др.
• Скрипты для обучения, оценки и генерации текстов
• Настройки, логи, загрузка данных и прочая инфраструктура
🛠 Это не просто ещё одна LLM — это попытка соединить два мира генерации текста и ускорить inference без потери качества.
🔗 Подробнее
Хотите попасть в аналитику, но теряетесь в море информации и не понимаете, какие навыки действительно важны? Боитесь, что без опыта вас не возьмут на работу? И да, ещё один популярный вопрос — а что, если мне 30/40/50+ лет?
Андрон Алексанян — эксперт по аналитике с 8-летним опытом и по совместительству CEO Simulative — покажет рабочие схемы и чёткий план, как устроиться в аналитику быстрее, даже если у вас нет опыта
Что будет на вебинаре?
— покажут реальные примеры, как оформить резюме и портфолио, чтобы привлекать внимание;
— обсудите, какие отклики работают, а какие сразу отправляют в корзину;
— изнанка найма: инсайдерский взгляд на процессы отбора
🕗 Важно досмотреть вебинар до конца, чтобы получить бонус от Simulative, который поможет бустануть карьеру
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
⚡️Релиз Qwen3-Embedding и Qwen3-Reranker
✨ Главное:
✅ Модели на 0.6B, 4B и 8B параметров
✅ Поддержка 119 языков
✅ Sota на MMTEB, MTEB и MTEB-Code
✅ Открытый код на Hugging Face, GitHub и ModelScope
✅ Доступ через API на Alibaba Cloud
🔍 Применение:
Поиск документов, RAG, классификация, поиск кода и др.
🟡 Qwen3-Embedding: https://huggingface.co/collections/Qwen/qwen3-embedding-6841b2055b99c44d9a4c371f
🟡 Qwen3-Reranker: https://huggingface.co/collections/Qwen/qwen3-reranker-6841b22d0192d7ade9cdefea
🟡 GitHub: https://github.com/QwenLM/Qwen3-Embedding
🟡 Modelscope: https://modelscope.cn/organization/qwen
@ai_machinelearning_big_data
#qwen
✨ Главное:
✅ Модели на 0.6B, 4B и 8B параметров
✅ Поддержка 119 языков
✅ Sota на MMTEB, MTEB и MTEB-Code
✅ Открытый код на Hugging Face, GitHub и ModelScope
✅ Доступ через API на Alibaba Cloud
🔍 Применение:
Поиск документов, RAG, классификация, поиск кода и др.
@ai_machinelearning_big_data
#qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🤖 Figure 02 уже сегодня сортирует, перемещает и анализирует десятки товаров одновременно
Наблюдая за такими роботами, сложно представить, что через год в логистике и на складах будут работать люди.
Скорость, с которой они развиваются, — просто ошеломляющая.
То, что ещё недавно казалось фантастикой, уже становится реальностью.
И происходит это быстрее, чем мы успеваем привыкнуть.
@data_analysis_ml
Наблюдая за такими роботами, сложно представить, что через год в логистике и на складах будут работать люди.
Скорость, с которой они развиваются, — просто ошеломляющая.
То, что ещё недавно казалось фантастикой, уже становится реальностью.
И происходит это быстрее, чем мы успеваем привыкнуть.
@data_analysis_ml
This media is not supported in your browser
VIEW IN TELEGRAM
🎬 Tencent выложила в открытый доступ код и веса модели **HunyuanCustom** — инструмента для кастомизации видео, управляемого аудио или другим видео.
🔊 Модель может на лету изменять видео на основе звуковой дорожки
🎥 Или адаптировать ролик под другое видео-вход
🧠 Подходит для синхронизации движений губ, мимики, анимации по голосу и многого другого
В репозитории доступны:
• Инференс-код
• Весы модели
• Примеры и документация
📂 GitHub
Теперь кастомизация видео — это всего несколько строчек кода.
@data_analysis_ml
#Tencent #Hunyuan
🔊 Модель может на лету изменять видео на основе звуковой дорожки
🎥 Или адаптировать ролик под другое видео-вход
🧠 Подходит для синхронизации движений губ, мимики, анимации по голосу и многого другого
В репозитории доступны:
• Инференс-код
• Весы модели
• Примеры и документация
📂 GitHub
Теперь кастомизация видео — это всего несколько строчек кода.
@data_analysis_ml
#Tencent #Hunyuan
Forwarded from Machine learning Interview
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Теперь можно запускать модели Hugging Face прямо в Google Colab — бесплатно!
Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.
✅ Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций
💡 Бонус для разработчиков:
Добавь файл
Пользователи смогут запускать твой пример сразу, без копирования кода!
🔥 Работает с Google Colab — бесплатно, быстро, удобно.
#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning
✔️ Подробнее
@machinelearning_interview
Больше не нужно настраивать окружение вручную. Просто заходишь на страницу модели — и нажимаешь "Open in Colab". Всё готово для запуска за секунды.
✅ Отлично подходит для:
- Быстрого теста модели
- Прототипирования и экспериментов
- Обучения и демонстраций
💡 Бонус для разработчиков:
Добавь файл
notebook.ipynb
в свой репозиторий модели — и Hugging Face автоматически подхватит его. Пользователи смогут запускать твой пример сразу, без копирования кода!
🔥 Работает с Google Colab — бесплатно, быстро, удобно.
#HuggingFace #Colab #ML #AI #OpenSource #DeepLearning
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 MiniCPM4 — компактная LLM нового поколения
Модель от OpenBMB, которая работает в 5 раз быстрее на конечных устройствах. Отлично подходит для edge-решений и встраивания.
🔧 Что нового:
🏗️ InfLLM v2 — обучаемое разреженное внимание
🧠 Model Wind Tunnel 2.0 — масштабирование с предсказуемой эффективностью
🔢 BitCPM — ультракомпактная тернарная квантизация
📚 UltraClean + UltraChat v2 — чистые датасеты для преобучения и fine-tuning
⚡ CPM.cu + ArkInfer — лёгкий фреймворк для быстрого инференса на GPU и в проде
📖 Technical Report: https://github.com/OpenBMB/MiniCPM/blob/main/report/MiniCPM_4_Technical_Report.pdf
🤗 Models: https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b
⭐ GitHub: https://github.com/OpenBMB/MiniCPM
@data_analysis_ml
#LLM #AI #MiniCPM4 #EdgeAI
Модель от OpenBMB, которая работает в 5 раз быстрее на конечных устройствах. Отлично подходит для edge-решений и встраивания.
🔧 Что нового:
🏗️ InfLLM v2 — обучаемое разреженное внимание
🧠 Model Wind Tunnel 2.0 — масштабирование с предсказуемой эффективностью
🔢 BitCPM — ультракомпактная тернарная квантизация
📚 UltraClean + UltraChat v2 — чистые датасеты для преобучения и fine-tuning
⚡ CPM.cu + ArkInfer — лёгкий фреймворк для быстрого инференса на GPU и в проде
📖 Technical Report: https://github.com/OpenBMB/MiniCPM/blob/main/report/MiniCPM_4_Technical_Report.pdf
🤗 Models: https://huggingface.co/collections/openbmb/minicpm-4-6841ab29d180257e940baa9b
⭐ GitHub: https://github.com/OpenBMB/MiniCPM
@data_analysis_ml
#LLM #AI #MiniCPM4 #EdgeAI
🦖 Tokasaurus — универсальный токенизатор с поддержкой 70+ языков
Tokasaurus — это быстрый и лёгкий инструмент для токенизации текста, созданный на базе библиотеки
🔍 Что умеет Tokasaurus:
• ✂️ Разбивает текст на токены для языковых моделей
• 🧠 Поддерживает GPT-совместимые токенизаторы (tiktoken, BPE и другие)
• 🌍 Работает с Python, JavaScript, C++, Rust, Markdown, JSON, YAML и многими другими
• ⚡ Очень быстрый — написан на Rust с Python-обёрткой
• 📦 Используется как CLI, Python-библиотека или Web API
🧪 Пример использования (Python):
🎯 Кому подойдёт:
• Тем, кто работает с LLM
• Для оценки длины prompt'ов
• Для предобработки кода и текста
• Для интеграции в пайплайны, IDE, аналитические инструменты
🔗 GitHub: github.com/ScalingIntelligence/tokasaurus
💡 Если тебе нужен универсальный и быстрый токенизатор — попробуй Tokasaurus.
@data_analysis_ml
Tokasaurus — это быстрый и лёгкий инструмент для токенизации текста, созданный на базе библиотеки
tokenizers
от Hugging Face. Он поддерживает более 70 языков программирования и естественных языков.🔍 Что умеет Tokasaurus:
• ✂️ Разбивает текст на токены для языковых моделей
• 🧠 Поддерживает GPT-совместимые токенизаторы (tiktoken, BPE и другие)
• 🌍 Работает с Python, JavaScript, C++, Rust, Markdown, JSON, YAML и многими другими
• ⚡ Очень быстрый — написан на Rust с Python-обёрткой
• 📦 Используется как CLI, Python-библиотека или Web API
pip install tokasaurus
🧪 Пример использования (Python):
from tokasaurus import tokenize
tokens = tokenize("def hello(): print('Hi')", model="gpt2")
print(tokens)
🎯 Кому подойдёт:
• Тем, кто работает с LLM
• Для оценки длины prompt'ов
• Для предобработки кода и текста
• Для интеграции в пайплайны, IDE, аналитические инструменты
🔗 GitHub: github.com/ScalingIntelligence/tokasaurus
💡 Если тебе нужен универсальный и быстрый токенизатор — попробуй Tokasaurus.
@data_analysis_ml
Apple внезапно опубликовала исследование, которое разоблачает популярные LLM с "цепочкой размышлений" (Chain-of-Thought) — такие как Gemini 2.5 Pro, OpenAI o3 и DeepSeek R1.
📌 Что тестировали?
Логические задачи:
• башни Ханоя (100+ шагов!)
• загадка про волка, козу и капусту
• головоломки с правилами и условиями
И всё это — с усложнением.
💥 Результаты:
— 🔁 Модели не думают, а вспоминают
Они не решают задачу шаг за шагом, а ищут похожие примеры в своей базе знаний. Это имитация мышления, а не само мышление.
— 🤯 "Переосмысление" вредит
Если задача простая, модель находит верный ответ — и… продолжает «думать» дальше, усложняя всё и случайно портя решение.
— 🧠 Больше размышлений ≠ лучше результат
Дать больше токенов и времени на размышления не помогает. На сложных задачах модели просто сдаются быстрее. Даже "бесконечный" бюджет не спасает.
— 🧪 Few-shot примеры не работают
Даже если расписать пошаговое решение и дать примеры — модель всё равно ломается, если задача ей незнакома.
— 🏗 Модели обожают Ханой, но ненавидят загадки
Башни Ханоя решаются идеально даже на 100+ шагов.
А вот в простой задаче с козой и капустой — модели сдаются на 4-м шаге. Почему? Ханой — в датасетах, загадки про реку — нет.
🧠 Почему LLM не справляются с Ханойскими башнаями при большом числе дисков
Модели вроде Sonnet 3.7, DeepSeek R1 и o3-mini не могут правильно решать башни Ханоя, если дисков больше 13 — и вот почему:
📏 Немного математики:
• Чтобы решить башни Ханоя, нужно минимум 2ⁿ − 1 ходов
• Один ход — это примерно 10 токенов (формат: «переместить диск X с A на B»)
• А значит, для 15 дисков нужно ~**327,670 токенов** только на вывод шагов
🧱 Лимиты моделей:
| Модель | Лимит токенов | Макс. число дисков (без размышлений) |
|--------------|----------------|---------------------------------------|
| DeepSeek R1 | 64k | 12
| o3-mini | 100k | 13
| Sonnet 3.7 | 128k | 13
И это без учёта reasoning (внутренних размышлений), которые модель делает перед финальным ответом.
🔍 Что реально происходит:
• Модели не могут вывести все шаги, если дисков слишком много
• При >13 дисках они просто пишут что-то вроде:
> *"Из-за большого количества шагов я опишу метод, а не приведу все 32 767 действий..."*
• Некоторые модели (например, Sonnet) перестают "думать" уже после 7 дисков — они просто описывают алгоритм и переходят к финальному ответу без вычислений
🎲 А теперь представим, что модель угадывает каждый шаг с точностью 99.99%
На задаче с 15 дисками (32767 ходов) ошибка почти неизбежна — чистая математика:
даже 0.01% ошибок на токенах *экспоненциально* накапливаются
🍏 Интересно, что Apple выпустила это исследование за день до WWDC 2025.
Подколка конкурентам? А завтра, может, и своё покажут. 🤔
📎 Исследование: https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
@data_analysis_ml
#AI #LLM #AGI #Apple #WWDC2025 #PromptEngineering #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🎯 Работа с многомерными данными — это вызов. Хотите узнать, как избавиться от лишнего «шума» и сохранить только важную информацию?
🔍 На открытом вебинаре вы узнаете, как методы уменьшения размерности помогают обрабатывать сложные данные, ускорять машинное обучение и находить скрытые закономерности. Мы разберем популярные техники: PCA, t-SNE, UMAP и автоэнкодеры, а также покажем, как эффективно применять их на практике.
🚀 С помощью простых и мощных методов вы научитесь повышать интерпретируемость моделей и ускорять их работу — это даст ощутимые преимущества в реальных проектах. Отличная возможность повысить свою квалификацию в Data Science!
📅 Урок пройдет в преддверии старта курса «Machine Learning. Professional».
🔗 Зарегистрируйтесь и получите скидку на обучение: https://otus.pw/uR54/?erid=2W5zFJBYgVN
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
🔍 На открытом вебинаре вы узнаете, как методы уменьшения размерности помогают обрабатывать сложные данные, ускорять машинное обучение и находить скрытые закономерности. Мы разберем популярные техники: PCA, t-SNE, UMAP и автоэнкодеры, а также покажем, как эффективно применять их на практике.
🚀 С помощью простых и мощных методов вы научитесь повышать интерпретируемость моделей и ускорять их работу — это даст ощутимые преимущества в реальных проектах. Отличная возможность повысить свою квалификацию в Data Science!
📅 Урок пройдет в преддверии старта курса «Machine Learning. Professional».
🔗 Зарегистрируйтесь и получите скидку на обучение: https://otus.pw/uR54/?erid=2W5zFJBYgVN
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.