Tensorflow(@CVision)
14K subscribers
1.17K photos
240 videos
68 files
2.24K links
اخبار حوزه یادگیری عمیق و هوش مصنوعی
مقالات و یافته های جدید یادگیری عمیق
بینایی ماشین و پردازش تصویر

TensorFlow, Keras, Deep Learning, Computer Vision

سایت دوره
http://class.vision

👨‍💻👩‍💻پشتیبان دوره ها:
@classvision_support
Download Telegram
#آموزش #سورس_کد

Image-to-Image Translation

کد قابل اجرای pix2pix در گوگل کولب + ویدیوی توضیحات فارسی

کد:

https://colab.research.google.com/github/alireza-akhavan/class.vision/blob/master/57-gan-pix2pix_tensorflow_eager.ipynb

دموی آنلاین pix2pix:
https://affinelayer.com/pixsrv/

ویدیوی آموزشی فارسی:

مقدمات GAN:
https://www.aparat.com/v/FjRVt
روش pix2pix + پیاده سازی (و روش cycleGAN):
https://www.aparat.com/v/S9bcT

#tensorflow #keras #GAN
#cycleGAN #pix2pix
#مقاله

یک کار جدید Image to image Translation
https://t.me/cvision/892

مقاله:
https://arxiv.org/pdf/1812.10889.pdf

کد:
https://github.com/sangwoomo/instagan

The paper #InstaGAN: Instance-Aware Image-to-Image Translation has been accepted by the respected International Conference on Learning Representations (#ICLR) 2019, which will take place this May in New Orleans, USA.


This new research is based on #CycleGAN, a GAN variant which can learn to translate images without paired training data to overcome the limitations of one-by-one pairing of #pix2pix in image translation. CycleGAN can automatically translate two given unordered image sets X and Y, but it cannot encode instance information in an image. CycleGAN results however are not ideal when translating images involving specific features of the target. The InstaGAN system overcomes this problem and combines instance information from multiple task targets.

کارها و مطالب مشابه و مرتبط:
https://t.me/cvision/214
https://t.me/cvision/870
https-://t.me/cvision/863

#Image_to_Image_Translation #GAN
#سورس_کد
حذف فیلترهای اسنپ چت با شبکه های GAN و روش pix2pix
#Desnapify

https://github.com/ipsingh06/ml-desnapify


آموزش فارسی و نوت بوک کولب روش pix2pix
https://t.me/cvision/863

#gan #pix2pix
#آموزش #pix2pix #GAN

همانطور که میدانید سایز وزودی شبکه U-Net در مدل pix2pix در مقاله آن به صورت 256x256 است. حالا اگر بخواهیم عکس هایی با سایز کوچکتر مثلا 32x32( مثلا در دیتاست Cifar10) به شبکه ورودی دهیم باید چه کنیم؟
یک راه ریسایز کردن عکس به سایز ورودی شبکه در هنگام فید کردن دیتا به شبکه است که این روش بسیار از لحاظ محاسباتی هزینه بر است.
راه دوم اصلاح معماری شبکه متناسب با سایز ورودی است و خب این راه به دلیل بزرگ بودن فضای مسئله و tricky بودن آموزش GANها کمی زمان بر است و ممکن است به بهترین جواب نرسیم.

جواب یکی از نویسندگان مقاله pix2pix به نحوه و منطق اصلاح معماری شبکه متناسب با سایز 32x32 :

Jun Yan Zhu:
"For the generator, you can remove the first two downsampling layers and their corresponding upsampling layers from defineG_unet_128. For the discriminator, remove one or two downsampling layers."

https://github.com/phillipi/pix2pix/issues/175


فیلم آموزش مربوط به این مبحث:
https://www.aparat.com/v/S9bcT
#خبر

اظهارات اخیر Andrew Ng فردی تاثیر گذار در حوزه یادگیری ماشینی، و یادگیری عمیق در مورد نرم افزار deep nude که اخیرا ارائه شده، و سوء استفاده ای از روش pix2pix است.

روش pix2pix یک روش بر مبنای #GAN است که برای #Image_to_Image_Translation استفاده میشود. در این روش تصویر ۱ توسط شبکه عصبی عمیق به تصویر متناظر ۲ تبدیل می گردد، که در این نرم افزار تصویر افراد ورودی شبکه، و تصویر بدون لباس فرد را خروجی میدهد.

https://twitter.com/AndrewYNg/status/1144668413140144128?s=19

جادی هم در این رابطه یک پست با عنوان
بالاخره «دوربین لخت کن» ساخته شد، و ما درکش نمی کنیم
نوشته که میتونید بخونیدش...


https://jadi.net/2019/06/deep-nude/
___
مطلب مرتبط:

#آموزش
آموزش شبکه ی مولد تخاصمی (GAN) برای تبدیل تصویر با روش pix2pix

https://www.aparat.com/v/S9bcT?c

اسلاید:

http://fall97.class.vision/slides/17.pdf

کد (نوت بوک پایتون تنسرفلو - کراس) :

http://nbviewer.jupyter.org/github/alireza-akhavan/class.vision/blob/master/57-gan-pix2pix_tensorflow_eager.ipynb


کلاس نوت فارسی pix2pix

http://blog.class.vision/1397/10/pixtopix/

#GAN #pix2pix #cyclegan #keras #tensorflow
#Image_to_Image_Translation
#deep_nude
Tensorflow(@CVision)
#آموزش #pix2pix #GAN همانطور که میدانید سایز وزودی شبکه U-Net در مدل pix2pix در مقاله آن به صورت 256x256 است. حالا اگر بخواهیم عکس هایی با سایز کوچکتر مثلا 32x32( مثلا در دیتاست Cifar10) به شبکه ورودی دهیم باید چه کنیم؟ یک راه ریسایز کردن عکس به سایز ورودی…
#کد #GAN #pix2pix #keras

سایز وزودی شبکه U-Net در مدل pix2pix در مقاله آن به صورت 256 در 256 است. حالا اگر بخواهیم عکس هایی با سایز کوچکتر مثلا 32 در 32 را به شبکه ورودی بدهیم، بهتر است معماری مدل(هم شبکه مولد و هم شبکه تمییز دهنده) را اصلاح کنیم.

در این صفحه میتوانید کد کراس مربوط به این مدل را متناسب با سایز ورودی 32 در 32 موجود در دیتاست Cifar10 و با پارامترهای بسیار کمتر ببینید:

https://github.com/vrkh1996/pix2pix-modified

نتیجه آموزش مدل روی دیتاست Cifar10 برای 3 ایپاک به صورت اینکه مدل هر عکس ورودی را بازسازی کند برابر است با میانگین قدر مطلق خطا 0.0113 روی مجموعه آزمون(یعنی مدل به طور میانگین میتواند با دقت حدود 99 درصد همان عکس های ورودی را بازسازی کند).

فیلم آموزش مربوط به این مبحث:
https://www.aparat.com/v/S9bcT
This media is not supported in your browser
VIEW IN TELEGRAM
#مقاله

Learning to Imitate Human Demonstrations via CycleGAN

در این مقاله ربات مستقیم با نگاه کردن به یک کار آن را فرا میگیرد. این مقاله از #CycleGAN استفاده کرده است.

https://bair.berkeley.edu/blog/2019/12/13/humans-cyclegan/

پانوشت:

اگر خاطرتان باشد #CycleGan همان بهبود مقاله #pix2pix برای شرایطی که ما زوج تصویر نداشتیم بود، مثلا در تبدیل اسب به گور خر نیز از این روش استفاده شده بود.