ميادين الاعمار
8.82K subscribers
17.8K photos
5.23K videos
8.34K files
7.05K links
منصة عربية تسعى لتجويد وتعزيز ومشاركة كل ماهو مفيد وجديد في مجالات الهندسة المدنية والمعمارية والارتقاء وتطوير مهاراتك في مجالات العمل المختلفة وتساهمُ في النهوض بالحس الهندسي للمهندس
Download Telegram
## قوة الخرسانة و درجاتها 💪

تُقاس قوة الخرسانة عادةً من حيث قوة الضغط 🏋️‍♀️، وهي أقصى قدر من ضغط الانضغاط الذي يمكن للخرسانة تحمله قبل الفشل 💥. يتم تحديد الحد الأدنى لقوة درجات الخرسانة المختلفة من خلال العديد من الكودات والمعايير، مثل معهد الخرسانة الأمريكي (ACI) ومعايير الهند (IS).

فيما يلي بعض درجات الخرسانة الشائعة مع الحد الأدنى لقوة الضغط:

درجة M5: نسبة الخلط هي 1:5:10 (جزء واحد من الأسمنت، 5 أجزاء من الرمل، و 10 أجزاء من الحصى). الحد الأدنى لقوة الضغط لخرسانة درجة M5 هو 5 ميجا باسكال (725 رطل لكل بوصة مربعة).

درجة M10: نسبة الخلط هي 1:3:6. الحد الأدنى لقوة الضغط لخرسانة درجة M10 هو 10 ميجا باسكال (1450 رطل لكل بوصة مربعة).

درجة M15: نسبة الخلط هي 1:2:4. الحد الأدنى لقوة الضغط لخرسانة درجة M15 هو 15 ميجا باسكال (2175 رطل لكل بوصة مربعة).

درجة M20: نسبة الخلط هي 1:1.5:3. الحد الأدنى لقوة الضغط لخرسانة درجة M20 هو 20 ميجا باسكال (2900 رطل لكل بوصة مربعة).

درجة M25: نسبة الخلط هي 1:1:2. الحد الأدنى لقوة الضغط لخرسانة درجة M25 هو 25 ميجا باسكال (3625 رطل لكل بوصة مربعة).

درجة M30: نسبة الخلط هي 1:0.75:1.5. الحد الأدنى لقوة الضغط لخرسانة درجة M30 هو 30 ميجا باسكال (4350 رطل لكل بوصة مربعة).

يرجى ملاحظة أن هذه القيم تقريبية ويمكن أن تختلف بناءً على عوامل مثل جودة المواد المستخدمة، وظروف المعالجة، وطرق الاختبار. من الضروري الرجوع إلى الكودات والمعايير ذات الصلة للحصول على معلومات دقيقة حول درجات الخرسانة وقوتها الدنيا.

#تصميم_هيكلي #اختبار_غير_تدميري #ذكاء_هيكلي #ذكاء_البناء #كود_البناء #استقرار_هيكلي #تصميم_مباني #باني #هندسة_هيكلية
## دراسة الجيوتقنية: مختبر وميدان

👷♂️ تشمل دراسة الجيوتقنية تحقيقات مختبرية وميدانية. تتضمن اختبارات المختبر إجراء ثمانية اختبارات أساسية على عينات التربة لتحديد خصائصها ومعلماتها المحددة، وهي ضرورية لفهم سلوك التربة وملاءمتها لتطبيقات الهندسة المختلفة.

❎️ علاوة على ذلك، يتم إجراء ثلاث دراسات ميدانية مهمة أيضًا لتكملة نتائج المختبر وتقديم فهم شامل لظروف التربة.📚⚓️🚦🤔
https://t.me/construction2018/52282

#التربة #اختبار #هندسة مدنية #مختبر #ميدان #بناء #أساس
## اختبار بروكتور لدمك التربة

👷♂️🤔

اختبار بروكتور هو إجراء مخبري يستخدم لتحديد محتوى الرطوبة الأمثل (OMC) والكثافة الجافة القصوى (MDD) للتربة. هذه المعلمات ضرورية لتحقيق مستوى الضغط المطلوب في تطبيقات هندسة التربة.

يتضمن الاختبار ضغط عينات التربة عند محتوى رطوبة مختلف وقياس كثافاتها الناتجة. ثم يتم رسم البيانات على رسم بياني لإنشاء منحنى الدمك، والذي يُظهر العلاقة بين محتوى الرطوبة والكثافة الجافة.

MDD
هي أعلى كثافة جافة يمكن تحقيقها لتربة معينة، وOMC هو محتوى الرطوبة الذي يحدث عنده MDD. هذه القيم مهمة لتحديد كمية الدمك المطلوبة لمشروع معين ولضمان ضغط التربة بشكل صحيح لتلبية خصائص الهندسة المطلوبة.🚦⚓️📚

❎️آمل أن يكون هذا الشرح المختصر مفيداً.
https://t.me/construction2018/52284

#ضغط #بناء #تربة #اختبار #مختبر
## نهج تفصيلي لمعالجة الشقوق في أسفل عمود خرساني 🏗️

الخطوات الفورية:

1. التفتيش والتقييم: 🔍
* التفتيش البصري: إجراء تفتيش بصري مفصل لتقييم مدى ونمط التشقق. 👁️
* الاختبار غير المدمر (NDT): استخدام طرق مثل سرعة النبض بالموجات فوق الصوتية (UPV) أو الرادار المخترق للأرض (GPR) لتقييم الحالة الداخلية للعمود. 📡
* تحليل الحمل: التأكد من أن الأحمال على العمود لا تتجاوز قدرته التصميمية. 🏋️‍♂️
2. تحليل السبب: 🤔
* الاستقرار: التحقق مما إذا كان الاستقرار التفاضلي للأساس قد يؤدي إلى إجهادات زائدة. 📐
* نقص المواد: التأكد من أن خليط الخرسانة المستخدم يلبي المواصفات المطلوبة. 🧪
* ممارسات البناء: مراجعة ممارسات البناء للتحقق من وجود أي أخطاء أثناء صب الخرسانة أو تصلبه. 🔨
* إزالة القوالب المبكرة: يمكن أن يؤدي إزالة القوالب مبكرًا إلى وقت تصلب غير كافٍ للخرسانة، مما يؤدي إلى انخفاض القوة وزيادة قابلية التشقق. ⏱️

الإجراءات التصحيحية:

1. إصلاح الشقوق: 🩹
* حقن الايبوكسي: بالنسبة للشقوق الضيقة غير الهيكلية، حقن الايبوكسي لاستعادة السلامة وختم الشقوق. 💉
* رغوة البولي يوريثان: استخدام رغوة البولي يوريثان للختم إذا كان الشق ديناميكيًا أو كان هناك تسرب للرطوبة. 🧽
2. إجراءات التعزيز: 💪
* تغليف الخرسانة: تغليف العمود الحالي بخرسانة إضافية لزيادة قدرته على تحمل الأحمال. 🧱
* تغليف الفولاذ: تطبيق لوحات فولاذية حول العمود لتعزيز القوة والاحتواء. 🛡️
* التغليف ببوليمر مقوى بالألياف (FRP): لف العمود بأوراق FRP لتحسين أدائه الهيكلي. 🧵
3. استبدال العمود: 🔄
* الإزالة الكاملة: في الحالات التي يكون فيها الضرر واسع النطاق، قد يكون من الضروري إزالة العمود بأكمله. 🗑️
* إعادة البناء: بناء عمود جديد يلبي جميع المتطلبات الهيكلية. 🏗️

الحلول طويلة الأجل:

1. المراقبة المنتظمة: 👁️‍🗨️
* تثبيت أجهزة مراقبة الشقوق أو مقاييس الإجهاد لمراقبة تقدم الشقوق بمرور الوقت. 📈
2. مراقبة الجودة: 📊
* ضمان اتباع إجراءات صارمة لمراقبة الجودة أثناء البناء، بما في ذلك التصلب السليم والتزام تصميم الخليط. 👷‍♂️
* تجنب إزالة القوالب مبكرًا. السماح بوقت تصلب كافٍ وفقًا للمبادئ التوجيهية القياسية لضمان وصول الخرسانة إلى قوتها المطلوبة.
3. إدارة الحمل: ⚖️
* تقييم الأحمال وإدارتها لمنع تحميل العمود بشكل زائد. 🏋️‍♂️

الاستشارة مع متخصص: 👨‍💼

من الضروري استشارة مهندس هيكلي. يمكنهم تقديم تحليل مفصل وتصميم خطة إصلاح وتقوية مناسبة بناءً على ظروف المشروع.

#إصلاح_الخرسانة #سلامة_الهيكل #هندسة_مدنية #سلامة_البناء #عمود_خرساني #تثبيت_الأساس #حقن_الايبوكسي #تقييم_هيكلي #اختبار_غير_مدمر #مراقبة_الجودة #صيانة_المباني #أفضل_ممارسات_البناء #استبدال_العمود
https://t.me/construction2018/52304
## ضمان الجودة: أنواع اختبارات حديد التسليح في البناء 🏗️

يُعد حديد التسليح عنصرًا أساسيًا في البناء، حيث يوفر القوة والاستقرار الضروريين للبنى الخرسانية. لضمان جودة وموثوقية حديد التسليح، يتم إجراء اختبارات مختلفة. فيما يلي أنواع الاختبارات الرئيسية المستخدمة في صناعة البناء:

1. اختبار الشد 🔧 يقيس اختبار الشد قدرة الفولاذ على تحمل الشد. يحدد قوة الخضوع، والقوة القصوى، وإطالة حديد التسليح، مما يضمن قدرته على تحمل الأحمال المتوقعة.

2. اختبار الانحناء 🔨 يقيّم اختبار الانحناء ليونة الفولاذ وقدرته على الانحناء. من خلال ثني الفولاذ إلى زاوية محددة، يفحص هذا الاختبار وجود أي شقوق أو عيوب قد تؤثر على أدائه في التطبيقات الواقعية.

3. اختبار إعادة الانحناء 🔄 يُعد اختبار إعادة الانحناء نوعًا من اختبار الانحناء، حيث يتم ثني الفولاذ إلى زاوية محددة ثم إعادة ثنيه في الاتجاه المعاكس. يقيّم هذا الاختبار قدرة الفولاذ على تحمل الانحناء المتكرر ومقاومته للتشقق.

4. اختبار الضغط 💪 يقيس اختبار الضغط قدرة الفولاذ على تحمل القوى الضاغطة. إنه مهم بشكل خاص للفولاذ المستخدم في الأعمدة والعناصر الحاملة الأخرى، مما يضمن قدرة المادة على تحمل الإجهادات الضاغطة.

5. التحليل الكيميائي ⚗️ يحدد التحليل الكيميائي تركيبة الفولاذ، ويفحص وجود عناصر محددة مثل الكربون والمغنيسيوم والكبريت. يضمن هذا الاختبار أن الفولاذ يلبي المواصفات الكيميائية المطلوبة لتحقيق المتانة والأداء.

6. اختبار التأثير 💥 يقيّم اختبار التأثير صلابة الفولاذ وقدرته على امتصاص الطاقة أثناء التأثيرات المفاجئة. يساعد في تقييم أداء الفولاذ تحت ظروف التحميل الديناميكي، مثل الزلازل أو تأثيرات الآلات الثقيلة.

7. اختبار التعب 🔄 يفحص اختبار التعب قدرة الفولاذ على تحمل دورات التحميل والتفريغ المتكررة. هذا الاختبار ضروري للبنى التي تتعرض لأحمال متذبذبة، مثل الجسور والمباني الشاهقة.

8. اختبار التآكل 🌧️ يقيّم اختبار التآكل مقاومة الفولاذ للتآكل، خاصة في البيئات المعرضة للرطوبة والأملاح والمواد الكيميائية. ضمان مقاومة التآكل أمر حيوي لضمان طول عمر الفولاذ ومتانته.

إن إجراء هذه الاختبارات على حديد التسليح ضروري للحفاظ على معايير عالية من الجودة والسلامة في مشاريع البناء. من خلال ضمان مطابقة الفولاذ للمواصفات الصارمة، يمكننا بناء هياكل قوية ومتينة ومقاومة.

لمزيد من الأفكار حول مواد البناء وأفضل الممارسات، تابع قناتنا

#بناء #هندسة_مدنية #حديد_التسليح #مراقبة_الجودة #اختبار_الفولاذ #مواد_البناء #السلامة_أولاً
https://t.me/construction2018/52310
🔨 مطرقة الارتداد: أداة قوية لقياس قوة الخرسانة

الاسم الشائع: مطرقة الارتداد.

مطرقة شميدت، المعروفة أيضًا باسم المطرقة السويسرية أو مطرقة الارتداد. هي أداة 🧰 تُستخدم لقياس الخصائص المرنة أو قوة هياكل الخرسانة 🏗️ أو الصخور ⛰️، وخاصة صلابة السطح ومقاومة الاختراق. اخترعها إرنست شميدت، مهندس سويسري 🇨🇭.

هي واحدة من معدات الاختبار غير المدمرة للخرسانة التي تُستخدم لتقدير قوة الضغط للخرسانة المصبوبة والمُعالجة اقتصاديًا أثناء الاستخدام (عمر الخدمة) أو أثناء البناء.

مطرقة شميدت هي أداة موثوقة 🛡️ تساعد في تقييم صلابة سطح هياكل الخرسانة والصخور.

قيمة الارتداد التي توفرها هي مؤشر رئيسي على قوة المادة وسلامتها. لكن ماذا يعني ذلك؟ 🤔

عند تحليل نتائج مطرقة شميدت، تذكر أن قيمة الارتداد الأعلى تشير عادةً إلى مادة أكثر صلابة وديمومة 💪.

على العكس من ذلك، قد تشير قيم الارتداد المنخفضة إلى نقاط ضعف 💔 أو شقوق 😥 أو تدهور 📉.

في التقييمات الهيكلية، نعتمد على بيانات مطرقة شميدت لتقييم قوة الخرسانة وتحديد العيوب وتخطيط الصيانة. إنها أداة لا غنى عنها لضمان طول عمر الجسور 🌉 والمباني 🏢 والبنية التحتية الحيوية الأخرى.

الشروط التالية التي يجب الالتزام بها أثناء إجراء اختبار مطرقة الارتداد:

1) يجب أن يكون الحد الأدنى لحجم المنطقة المراد اختبارها 150 مم قطرًا.
2) يجب أن يكون السطح المراد اختباره مسطحًا (مستويًا).
3) يجب أن يكون السطح المراد اختباره خاليًا من الماء والرطوبة.
4) يجب ألا تكون الخرسانة المراد اختبارها متجمدة لأنها ستعطي أرقام ارتداد عالية خادعة.
5) أثناء إجراء الاختبار، من الضروري تجنب الاختبار بالقرب من قضبان التسليح لأنها ستعطي قيم ارتداد عالية خادعة.

إذا كنت تريد معرفة قوة الخرسانة المستخدمة في مبناك، فاتصل بخبير ودعه يقوم بذلك نيابة عنك.

ما هي معلوماتك عن مطرقة الارتداد، شاركنا رأيك في قسم التعليقات.

#مطرقة_الارتداد #شميدت #اختبار_الخرسانة
https://t.me/construction2018/52380
This media is not supported in your browser
VIEW IN TELEGRAM
اختبار اختراق المخروط الديناميكي (DCP) أثناء فحص هيكلي باستخدام تقنيات غير مدمرة (NDT) لمبنى موجود.

يهدف الاختبار إلى تحديد الخصائص الهندسية للتربة في الموقع الذي تم بناء الأساسات عليه. سيكون الناتج الرئيسي "القيمة العددية لسعة تحمل التربة" والتي ستستخدم لتقييم قدرة الأساسات الموجودة.

تم التقاط اللقطات في موقع تجديد هيكلي نشط في لافينغتون - نيروبي، كينيا.

نحن شركة رائدة في مجال الهندسة وإدارة المشاريع.


نجمع فريقًا نموذجيًا من المتخصصين في البناء ذوي الخبرة الواسعة في البيئة المبنية والطبيعية لتقديم أي تصميم وتنفيذ مشروع. نحن نتعاون مع مساحي الكميات والمهندسين والمهندسين المعماريين ومديري المشاريع والمقاولين لضمان تحقيق الأمثل لكل مشروع.


#مهندس_مدني #شمع_شميدت #بناء_الأساسات #موقع_التجديد #هندسة_هيكلية #تصميم_البناء #بناء_المباني #DCP #لا_تخدع_من_قبل_الحرفي #تصميم_عماري #هندسة_عمارية #سعة_تحمل #هندسة_المناظر #اختبار_غير_مدمر #بناء_المباني #هندسة_هيكلية #هندسة_مدنية #بنايات #إدارة_المشاريعl
## اختبار الكشف عن حديد التسليح الخرساني باستخدام الموجات الكهرومغناطيسية غير المدمرة قيد التنفيذ 🧲

تطبيقات هذا الاختبار:

* التحقق من حديد التسليح وتحليله 🔍
* فحص تغطية الخرسانة على مساحات واسعة لأعمال الإصلاح الهيكلية 🏗️
* عمليات فحص قبول المباني ومراقبة الجودة 🏢
* المساعدة في تجنب ضرب حديد التسليح والتلف الناتج عن القطع عبر التعزيزات ذات الأهمية الهيكلية عند أخذ العينات الأساسية والحفر بالمطرقة 🔨
* إنشاء تقارير تقييم هيكلية بما في ذلك الإحصائيات والعرض المرئي في مناظر ثنائية وثلاثية الأبعاد لمساحات تصل إلى 45 × 45 متر 📊

تم التقاط اللقطات في موقع تجديد هيكلي نشط



#لا_تُخدع_بالحرفي #اسأل
#التصميم_المعماري #الهندسة_المعمارية #بناء_فعال_من_حيث_التكلفة #تحدي_الرطوبة #بناء_المباني
#Engineering #
التدقيق_الهيكلي #مهنيون_في_البناء #التحليل_الهيكلي #عزل_الجدران_من_الماء #اختبار_غير_مدمر
#Engineering_Solutions #التدقيق_الهيكلي
#NDT
https://t.me/construction2018/52471
## اختبارات الخرسانة غير المدمرة 🏗️

اختبارات الخرسانة غير المدمرة (Concrete NDT) هي اختبارات تُجرى على خصائص الخرسانة، بشكل عام دون إتلافها، لتقييم معامل معين (خواص فيزيائية أو كيميائية أو قوة) والتي ستوفر بشكل مباشر أو غير مباشر خاصية مطلوبة لتلبية معيار محدد من الخرسانة أو موادها المدمجة.

هناك العديد من أنواع الاختبارات غير المدمرة التي تُجرى على الخرسانة لتحديد خواصها الفيزيائية والكيميائية وقوتها:

1. اختبارات الاختراق للخرسانة (ASTM C803): يُعتبر مسبار وندسور بشكل عام أفضل وسيلة لاختبار الاختراق. تتكون المعدات من بندقية أو مُشغل مُفعّل بالبارود، ومسبار من سبيكة مُصلّبة، وخرطوشات محملة، ومقياس عمق لقياس اختراق المسبار ومعدات أخرى ذات صلة. 🔨

2. طريقة مطرقة الارتداد (مطرقة شميدت) (ASTM C805): تُعد مطرقة الارتداد جهاز اختبار صلابة السطح، حيث تم إنشاء علاقة تجريبية بين قوة الخرسانة وعدد الارتداد. تُدفع المطرقة ضد سطح الخرسانة بواسطة زنبرك، ويُقاس مسافة الارتداد على مقياس. يمكن أن يكون سطح الاختبار أفقيًا أو رأسيًا أو بزاوية، ولكن يجب معايرة الجهاز في هذا الوضع. 🧲

3. اختبارات سحب القوة للخرسانة (ASTM C900): يقيس اختبار سحب القوة، باستخدام رافعة خاصة، القوة المطلوبة لسحب قضيب فولاذي مُشكل بشكل خاص من الخرسانة، حيث تم دمج طرفه الموسع في الخرسانة بعمق 3 بوصات (7.6 سم). تكون الخرسانة في نفس الوقت تحت الشد والقص، لكن القوة المطلوبة لسحب الخرسانة يمكن ربطها بقوتها الانضغاطية. 🏋️‍♀️

4. طريقة سرعة النبضات فوق الصوتية (ASTM C597): تُقيس هذه الطريقة زمن انتقال نبضة فوق صوتية تمر عبر الخرسانة. تُولّد النبضات عن طريق إثارة بلورات بيزو كهربائية بشكل صدمي، مع استخدام بلورات مماثلة في المستقبل. يُقاس الوقت الذي تستغرقه النبضة للعبور عبر الخرسانة بواسطة دوائر قياس إلكترونية. 📡

5. الأساليب الإشعاعية لاختبارات الخرسانة غير المدمرة: يمكن استخدام الأساليب الإشعاعية لاختبار الخرسانة للكشف عن موقع التعزيز، وقياس الكثافة، وربما تحديد ما إذا كان قد حدث تخلخل في وحدات الخرسانة الإنشائية. ☢️

6. أجهزة الاستشعار اللاسلكية لقياس نضج الخرسانة (ASTM C1074): تعتمد هذه التقنية على مبدأ أن جودة الخرسانة وقوتها مرتبطتان بشكل مباشر بتاريخ درجة حرارة ترطيبها. تُوضع أجهزة الاستشعار اللاسلكية داخل قالب الخرسانة وتُثبت على حديد التسليح قبل صب الخرسانة. 🌡️

7. نواة الحفر (ASTM C42): تُستخدم مثقاب نواة لاستخراج الخرسانة المُصلّبة من اللوح. ثم تُضغط هذه العينات في آلة لمراقبة قوة الخرسانة في الموقع. ⛏️


#بناء #إنشاء #اختبار_الخرسانة #فوق_الصوت #اختبار_المطرقة #NDT #اختبار_غير_مدمر
## اختبارات الموجات فوق الصوتية للخرسانة: نظرة شاملة

🌊 اختبارات الموجات فوق الصوتية للخرسانة 🏗️

تُعد اختبارات الموجات فوق الصوتية للخرسانة تقنية فعالة للكشف عن الهياكل الداخلية للخرسانة دون الحاجة إلى تدميرها.

كيف تعمل؟ 🤔

1. إرسال النبضات: يُرسل محول الطاقة الكهربائية الصوتية نبضات اهتزازية طولية تنتشر في الخرسانة.
2. قياس زمن العبور: يقيس جهاز اختبار سرعة النبض بالموجات فوق الصوتية (UPV) زمن رحلة هذه النبضات عبر الخرسانة.
3. تحليل البيانات: تُستخدم هذه البيانات لحساب سرعة الصوت في الخرسانة وتقدير قوتها الميكانيكية.

مميزات اختبارات الموجات فوق الصوتية:

* سهولة الاستخدام: تُعد تقنية سهلة الاستخدام.
* دقة عالية: تتميز بدقة واستقرار عالٍ.
* لا إتلافية: لا تتطلب تدمير العينة.
* فعّالة: تُعد تقنية فعّالة للكشف عن العيوب والهياكل الداخلية.

فوائد اختبارات الموجات فوق الصوتية:

* تحديد قوة الخرسانة: تُساعد في التنبؤ بقوة الخرسانة الميكانيكية دون الحاجة لاختبارات إتلافية.
* الكشف عن العيوب: تُمكن من الكشف عن العيوب والهياكل الداخلية مثل الفراغات والشقوق.
* تحسين جودة البناء: تُساعد في تحسين جودة البناء وضمان سلامة الهياكل.

خلاصة:

تُعد اختبارات الموجات فوق الصوتية للخرسانة تقنية أساسية في مجال هندسة الإنشاءات. تُساعد هذه التقنية على تحسين جودة البناء وضمان سلامة الهياكل.

#اختبار_الخرسانة #موجات_فوق_صوتية #هندسة_إنشاءات #اختبارات_غير_إتلافية #اختبار_UPV #قياس_قوة_الخرسانة #فحص_اللا_إتلافي #هندسة_بناء #خواص_الخرسانة #تصميم_إنشاءات
https://t.me/construction2018/52602