Big Data AI
16.4K subscribers
738 photos
85 videos
19 files
757 links
@haarrp - админ

Вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейроннным сетям

@data_analysis_ml - анализ данных

@ai_machinelearning_big_data

@itchannels_telegram - важное для программиста

РКН: clck.ru/3Fmqxe
Download Telegram
machine-learning-cheat-sheet.pdf
1.9 MB
📎 130-страничная шпаргалка с изложением ключевых концепций #MachineLearning

https://github.com/soulmachine/machine-learning-cheat-sheet

Ставь ❤️ и сохраняй себе, чтобы не потерять.

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Простая и эффективная генерация текста с помощью pytorch-native трансформера на python <1000 LOC.

https://github.com/pytorch-labs/gpt-fast #deeplearning #machinelearning #ml #ai #neuralnetworks #datascience #pytorch

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
Этот репозиторий содержит 50+ проектов, охватывающих Data #Analytics, #DataScience, #DataEngineering, #MLOps и #MachineLearning.

https://github.com/Coder-World04/Data-and-ML-Projects-

@bigdatai
Nvidia не смогла получить от TSMC выделенную линию для упаковки ИИ-чипов

💡 Nvidia не смогла получить от TSMC выделенную линию для упаковки ИИ-чипов, используя метод CoWoS. Основатель Nvidia Дженсен Хуанг встретился с руководителями TSMC, но получил отказ. TSMC признала, что не сможет удовлетворить спрос на компоненты для ИИ-систем до 2026 года, и решила сохранять равные условия для всех клиентов. Хотя TSMC ранее предоставляла привилегии крупным клиентам, как Apple, ситуация с Nvidia отличается. Компания будет жестко отстаивать свои интересы в переговорах. 🌐

#python #machinelearning #neuralnetwork #ml

@bigdatai
🔥 Курс — генеративный ИИ для разработчиков!

🌟 В этом комплексном курсе по генеративному ИИ вы глубоко погрузитесь в мир генеративного ИИ, изучив ключевые концепции, такие как большие языковые модели, предварительная обработка данных и продвинутые методы, такие как тонкая настройка и RAG. С помощью практических проектов с такими инструментами, как Hugging Face, OpenAI и LangChain, вы создадите реальные приложения от резюмирования текста до пользовательских чат-ботов. К концу вы освоите конвейеры ИИ, векторные базы данных и методы развертывания с использованием таких платформ, как Google Cloud Vertex AI и AWS Bedrock.

🕞 Продолжительность: 21:11:20

🔗 Ссылка: *клик*

#курс #machinelearning #ai

@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Курс по Ollama — создавайте ИИ-приложения локально!

🌟 C такими инструментами, как Ollama, вы можете привнести передовые возможности ИИ прямо в свою локальную среду. Изучение того, как использовать локальные большие языковые модели (LLM), может открыть целый мир возможностей. Локальные LLM обеспечивают больший контроль, настройку и конфиденциальность данных по сравнению с облачными системами ИИ.

🕞 Продолжительность: 2:57:23

🔗 Ссылка: *клик*

#курс #ollama #machinelearning


@bigdatai
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ Макрон объявил, что Франция планирует инвестировать в развитие ИИ 109 миллиардов евро в ближайшие годы.

Он уточнил, что среди инвесторов французских проектов в области ИИ будут компании из Объединенных Арабских Эмиратов, Соединенных Штатов, Канады и самой Франции.

Кроме того, Макрон подчеркнул намерение Парижа сотрудничать с Нью-Дели и Пекином для продвижения технологий искусственного интеллекта. «Мы стремимся к совместной работе с Индией», – сказал он, добавив, что Франция также намерена взаимодействовать с Китаем и Соединенными Штатами, однако не хочет зависеть ни от одной страны.

Относительно обсуждений о возможном запрете использования китайского чат-бота DeepSeek в некоторых странах, Макрон выразил мнение, что запрет технологических решений лишь на основании их происхождения является неоправданным шагом.
Новость

✔️OpenAI дебютировал на Super Bowl, выпустив рекламу ChatGPT стоимостью 14 миллионов долларов.
Видео

✔️ ByteDance показали новый генератор видео Goku.

- Goku: генеративная модель видео на основе потоков.
- Goku+: Модель, которая позиционируется, как модель для генерации видеорекламы и обещает быть в 100 раз дешевле, чем традиционные методы создания видео-рекламы.
Аrxiv

✔️ Свежий гайд, который поможет вам тренировать свой собственный ризониг LLM.

С этим ноутбуком примерно за 2 часа можно обучить модель Qwen 0.5B на математическом наборе данных GSM8K, используя обучение с подкреплением!
Colab Demo

✔️ LeRobot — это образовательный проект, направленный на создание бюджетного робота, стоимость каждой руки которого составляет всего 110 долларов. С помощью обычного ноутбука пользователи могут обучать робота различным навыкам.

Проект предлагает платформу с готовыми моделями, наборами данных и инструментами для работы с робототехникой на базе PyTorch.

На данный момент доступны предварительно обученные модели, демонстрационные среды для симуляций, а также готовые скрипты для обучения и управления реальными роботами.

Также предоставляются рекомендации по ведению логов и оценке моделей, а также ссылки на исследовательские материалы и примеры кода для профилирования.
Github

✔️ Стартап Ильи Суцкевера, сооснователя OpenAI, оценили в $20 миллиардов.

Safe Superintellgence(SSI), основанная в июне 2024, еще ничего не выпускает и не зарабатывает, так как первым продуктом обещают сразу ни больше ни меньше — safe AGI.

А пока просто посмотрите на сайт компании, которая УЖЕ привлекла миллиард долларов и собирается привлечь еще.
ssi.inc

Уверенность в себе и команде выглядит именно так 😎

@ai_machinelearning_big_data


#openai #deeplearning #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #qwen #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Google Research повышает планку: Новый бенчмарк для оценки LLM на задачах Международных Научных Олимпиад.

Интересный материал об оценке реальных способностей LLM к научному мышлению.

Стандартные бенчмарки вроде MMLU важны, но часто не отражают глубину рассуждений, необходимую для решения сложных научных задач. Google предлагает новый подход.

Существующие метрики оценки LLM недостаточны для измерения способностей к решению нетривиальных научных проблем, требующих многошаговых рассуждений и глубокого понимания предметной области.

Новый бенчмарк "SciOlympiad": Google собрал датасет из задач Международных Научных Олимпиад (ISO) по физике, химии, биологии, математике и информатике. Это задачи экспертного уровня, разработанные для выявления лучших человеческих умов.

Фокус на Reasoning (Рассуждениях): Оценка делается не только по финальному ответу, но и по качеству и корректности "цепочки мыслей" (Chain-of-Thought). Для сложных задач привлекались люди-эксперты для верификации логики рассуждений модели.

📌✔️Результаты state-of-the-art LLM (включая Gemini Ultra):
Модели показывают определенный прогресс, но их производительность значительно ниже уровня победителей-людей на ISO.
Наблюдается сильная вариативность по предметам: модели лучше справляются там, где больше символьных манипуляций (математика, информатика), и хуже – где требуется глубокое концептуальное понимание (физика, химия).
Даже продвинутые LLM часто допускают фундаментальные концептуальные ошибки и сбои в многошаговой логике, которые не свойственны экспертам.

SciOlympiad – это ценный, хоть и очень сложный, бенчмарк для стресс-тестирования реальных научных способностей LLM.
Результаты подчеркивают текущие ограничения LLM в области сложного научного мышления и решения проблем.
Исследование указывает на направления для будущей работы: необходимо совершенствовать не только знания моделей, но и их способности к глубоким, надежным и креативным рассуждениям.

🔗 Статья

#LLM #AI #MachineLearning #Evaluation #Benchmark #ScientificAI #Reasoning #GoogleResearch #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM