Ivan Begtin
7.98K subscribers
1.82K photos
3 videos
101 files
4.53K links
I write about Open Data, Data Engineering, Government, Privacy, Digital Preservation and other gov related and tech stuff.

Founder of Dateno https://dateno.io

Telegram @ibegtin
Facebook - https://facebook.com/ibegtin
Secure contacts ivan@begtin.tech
Download Telegram
Почему я в последнее время много думаю и пишу про геоданные?
Есть 4 основных типов общедоступных данных данных которые собираются в Dateno:
- открытые данные (opendata). С ними всё довольно понятно, их много, не не бесконечно много. Большая часть порталов известны, далее просто длительная методическая работа по их систематизации и сбору датасетов
- научные данные. Тут не всё так понятно, и этих данных по объёму более всего в мире, но в каждой науке свои виды каталогов данных, стандарты и тд. За пределами отдельных научных дисциплин у этих данных не так много пользы
- статистика и индикаторы. Нужны всем, чаще стандартизированы, поддаются систематизированному сбору и "расщепляются" на множество поддатасетов в привязке к конкретным странам и территориям. Много усилий требуется по агрегации национальных каталогов статистики.
- геоданные. Их много, чаще стандартизированы, но поиск и каталогизация явно недостаточны. Предыдущие попытки чаше безуспешны.

Остальные типы данных - это данные для машинного обучения, данные из коммерческих маркетплейсов или датасеты из порталов микроданных (социология), все они сильно меньше количественно.

Существенный количественный рост данных в Dateno будет от трёх категорий: научные данные, данные индикаторов и геоданные.

При этом научные данные можно _очень быстро_ загрузить из 3-4 крупных источников и это добавит +20 млн датасетов и создаст огромные пузыри данных по нескольким языкам, категориям и темам.

Данные индикаторов стремительно превратят Dateno в портал по макроэкономике/макростатистике. Их также можно загрузить +5 млн датасетов в короткое время.

А в агрегированных геоданных сейчас есть объективный "пузырь", огромное число датасетов по Германии отчего в любом поисковике по данным доля геоданных их Германии достигает 40-60% от общего числа. Если не больше.

Конечно, в какой-то момент, можно перестать думать про этот баланс и залить в Dateno несколько десятков миллионов датасетов и уже потом заниматься вопросами качества индекса. Так, например, сделали в агрегаторах научных данных типа SciDb и OpenAIRE. Там очень много мусора который создаёт количество датасетов, но который и почти не найдёшь потому что эти мусорные данные даже не подпадают под фасеты. В общем-то там ставка однозначно сделана на количество датасетов, а в этом смысле нет проблемы достигнуть того же.

#opendata #data #dateno #thoughts #geodata
Читаю научную статью Relationships are Complicated! An Analysis of Relationships Between Datasets on the Web [1] от команды Google Datasets из которой немного больше понятно о том как устроен их Google Dataset Search и не могу не отметить насколько неглубоко они погружаются в тематику того чем занимаются и с насколько небольшими датасетами метаданных работают. В этом случае они работали с датасетом с метаданными о 2.7 миллионов наборах данных.

Но сама проблема которую они поднимают актуальна. К данным не работают индексы цитирования, а взаимосвязи между ними не всегда можно установить простым образом если авторы сами не указали.

Но, почему я лично считаю их статью неглубокой:
1. Кроме базовых стандартов вроде DCAT, Schema.org и других есть куда больше более сложных стандартов публикации данных, особенно научных, где эти взаимоотношения прописаны куда чётче.
2. Взаимоотношения датасетов, по хорошему, это предмет онтологического моделирования и дополнения/расширения/адаптации DCAT
3. Более сложная эвристика не только и не столько в анализе названий, как это делают авторы, а в общих схеме/структуре данных между датасетами, пересечение по содержанию и тд.

Правда работ в этой области не так много, но от ребят из Гугла я ждал большего.

Когда у меня только начинались мысли про Dateno изначально желание было с запустить процесс постоянного обогащения метаданных чтобы сделать поиск насыщеннее: больше фильтров, лучше связи между данными, больше понимания их содержимого и тд. Но, случайно, получилось собрать быстро много датасетов и по прежнему не покидает ощущение что их слишком мало. Данных всегда мало!😜

Но о том что можно выдавать пользователю инфу про схожие датасеты мысли были и есть. Можно использовать тут сложную эвристику или функции а ля ИИ заложенные в поисковый движок, а можно большее знание о самих данных и простые выборки на основе этого.

Ссылки:
[1] https://www.semanticscholar.org/paper/Relationships-are-Complicated%21-An-Analysis-of-on-Lin-Alrashed/97e3cfd5a6cf88f2b1887c5fefc76b528e92f23b

#opendata #datasets #google #dateno #readings
Please open Telegram to view this post
VIEW IN TELEGRAM
Open data in Scotland: a blueprint for unlocking innovation, collaboration and impact [1] ещё один любопытный документ про открытые данные в Шотландии.

Видимо чтобы подтолкнуть правительство Шотландии создать портал открытых данных региона. При этом надо сказать что в реестре Dateno [2] Шотландии есть 29 каталогов данных и в самом Dateno проиндексировано 7500+ датасетов из Шотландии. Скорее всего данных там реально больше.

Надо, кстати, как-нибудь доработать реестр и отображать каталоги данных на субрегиональном уровне, добавить мониторинг доступности, перевести ведение реестра из формата сборки в формат СУБД.

Но это скорее задачи для бэклога.

Сейчас чтобы работать с реестром каталогов данных Dateno можно просто скачать файл full.jsonl [3] из репозитория и выполнить команду
select uid, catalog_type, software.id, link from (select *, unnest(owner.location.subregion) from 'full.jsonl') where id_1 = 'GB-SCT';


Очень и очень просто. А сам реестр постоянно пополняется.

Ссылки:
[1] https://www.gov.scot/publications/open-data-scotland-blueprint-unlocking-innovation-collaboration-impact/
[2] https://dateno.io/registry
[3] https://github.com/commondataio/dataportals-registry/tree/main/data/datasets

#opendata #datasets #scotland #dateno
На всякий случай, для тех кто не знает, посты с рассказом про источники данных и Dateno я дублирую на английском в LinkedIn [1] где можно подписаться на эти и другие новости проекта.

Закидывать туда посты, я, и коллеги, будем нечасто, но регулярно и на английском языке и по теме data discovery.

А в этом телеграм канале я пишу:
а) На русском.
б) Часто
в) Про разное

Ссылки:
[1] https://www.linkedin.com/company/datenoproject/posts/?feedView=all

#opendata #dateno
А вот и свежие новости о Dateno. Мы привлекли раунд инвестиций в рамках которого в ближайшее время планируем запустить API, значительно увеличить поисковый индекс и добавить немало новых возможностей которые сейчас в разработке, а это и функции ИИ, и значительная работа по улучшению качества и полноты поиска. А также, что немаловажно, мы добавим в поиск немало данных связанных с web3 и blockchain.

#opendata #dateno #datasearch #investment #ai #blockchain #web30
Forwarded from Dateno
Exciting News from Dateno!

We are thrilled to announce that Dateno has successfully closed its latest investment round, led by Blockchair! 🎉 This marks a major milestone in our mission to revolutionize data accessibility and search.

Since our launch just a few months ago, Dateno has been rapidly growing, now indexing over 15 million datasets. By the end of 2024, we aim to expand this number to 30 million! Our platform offers a focused and advanced data search experience, supporting 13 facets for filtering results, making it easier than ever for users to find the datasets they need.
With this new investment and partnership, we’re excited to roll out major updates, including the launch of the Dateno API. This will position Dateno as the world's largest search index for data, allowing other projects to integrate our robust data search capabilities directly into their platforms.

We’re also incorporating blockchain and web3 data from Blockchair and other decentralized finance players, and we’re hard at work on AI-powered features to improve search accuracy and relevance. These enhancements will empower data analysts worldwide, making their work more intuitive, efficient, and insightful.

We’re just getting started, and we’re grateful for the support of our investors, partners, and the entire Dateno community. Stay tuned for more updates, and thank you for being part of this journey with us! 🚀

#Dateno #DataSearch #Investment #Innovation #AI
Про то как публикуют и работают с опубликованными датасетами расскажу про их публикацию по стандарту schema.org.

В Schema.org, наборе стандартов для публикации информации о разных объектах для удобства их индексирования, есть два типа объектов Dataset и DataCatalog. Первый описывает набор данных и включает довольно большое число атрибутов, редко заполненных полностью, но тем не менее. Второй описывает коллекцию наборов данных, как правило это наборы данных одного сайта, реже несколько каталогов данных на одном сайте.

Особенность в том что если объекты типа Dataset ещё более-менее встречаются, то DataCatalog - это безусловная редкость. К примеру, в проекте Web Data Common за 2023 год извлечено менее миллиона (839 тысяч) ссылок на страницы с объектами Dataset и совсем нет объектов типа DataCatalog. Нет не случайно, потому что даже беглая проверка по каталогам данных в Dateno registry показывает что в лучшем случае у каждого тысячного каталога данных есть эта разметка.

А вот разметка Dataset присутствует у многих каталогов, из широко известных, к примеру, Hugging Face и Kaggle. А вот к примеру, на общеевропейском портале data.europa.eu этой разметки нет, а на национальном портале США data.gov она сокращённая и даёт только минимальные атрибуты такие как название и ключевые слова, без детализации прикреплённых ресурсов или лицензий.

При этом в команде Google, полтора года назад упоминали что в их поисковом индексе Google Dataset Search есть 45 миллионов записей с 13 тысяч сайтов. Правда у них охват шире чем у Common Crawl, а также явно кроме объектов Dataset они добавляют в индекс объекты типа DataDownload, они тоже есть в спецификации schema.org и, наконец, Google Dataset Search индексирует датасеты через разметку RDFa, а по ней нет статистики из Common Crawl. В проекте Web Data Commons нет отдельной выгрузки объектов типа Dataset для RDFa.

Основных проблем со Schema.org две.

Первая в том что это добровольная разметка объектов и слишком часто ей размечают коммерческие данные и сервисы рассчитывая на продвижение в поиске Гугла. И действительно там в поиске много "мусора", данных не имеющих ценности, но проиндексированных и доступных для поиска.

Вторая в том что реально интересные каталоги данных Schema.org не поддерживают. Особенно это справедливо в отношении геоданных и геопорталы практически все используют только собственные стандарты публикации данных.

Собственно поэтому в Dateno основная индексация не через краулинг объектов Schema.org, а несколько десятков видов API.

#thoughts #datasearch #dateno
Для тех кто давно не слышал новостей про наш стартап-проект Dateno.io, поисковой системы по данным, вот самая свежая новость - мы создали личный кабинет и доступ к поисковому индексу через API. Поисковый индекс тоже растёт и составляет уже 19 миллионов наборов данных и это не предел, цель была до конца года достичь хотя бы 20 миллионов, но реально будет больше, скорее всего.

В любом случае API Dateno можно уже пользоваться, интегрировать с собственными разработками, строить поисковики, например, по странам и ещё многое другое.

Пишите про ваши кейсы использования, какие возникнут вопросы и идеи, будем придавать им приоритет.

#opendata #datasearch #data #dateno
Forwarded from Dateno
Dateno Expands Data Capabilities for Professionals with API and Dashboard Tools!

We are thrilled to announce the launch of two powerful tools designed specifically for data professionals: the My Dateno personal dashboard and the Dateno API! These updates will greatly enhance your ability to manage and integrate data search into your workflows.

With My Dateno, users can now track their search history and access API keys, making it easier than ever to tap into Dateno's extensive data search capabilities. In the future, My Dateno will also provide access to premium features and additional data services. Plus, those who join our early access program will get free access to these new features during the testing period!

The Dateno API enables developers and businesses to integrate our platform’s search functionality directly into their products and infrastructure. This API offers fast, efficient search across 19 million datasets—including data files, geoAPI connections, and statistical indicators—with powerful filtering options. Retrieve comprehensive metadata and related resources, and streamline your data processing with ease.

We’re excited to empower data professionals with these new tools! 🚀

Learn more and sign up for early access at dateno.io

#Dateno #DataSearch #API #Innovation #DataIntegration #DataProfessionals
Мы пока ещё не закинули описания вакансий в телеграм канал Dateno, но скоро это сделаем. Пока напишу в режиме пред-анонса. Мы ищем Data engineer, AI engineer и Frontend developer в наш проект. Вот тут наш технологический стек (MongoDB, Python, React, Meilisearch) и много data инженерных задач, потребность в AI экспериментах и необходимость в разработке интерфейса. Работа дистанционная, идеально если кандидаты в Армении, но рассмотрим и в других странах. А делаем мы инновационный поиск по датасетам с очень большим и открытым поисковым индексом, API и множеством дополнительных фич.

Позиции не для джуниоров, ну или если джуниоров то problem solving навыки должны быть прокачены. Для инженеров навыки по построению конвееров данных (data pipelines) обязательны, а для фронтендера важно любить пользователей и думать о них.

Я чуть позже сделаю пост с вакансиями, а пока если есть резюме можно писать лично мне на ivan@begtin.tech или dateno@dateno.io.

#dateno #job #vacancies