В рубрике как это устроено у них Indian Data Portal [1] портал открытых данных созданный Bharti Institute of Public Policy, индийским исследовательским центром в области публичной политики.
Интересен тем что работает на собственном движке поверх каталога открытых данных CKAN. Сами данные хранятся в связанном с ним каталогом данных [2], а основной веб сайт использует API каталога данных для создания дополнительных фильтров при поиске данных, таких как гранулярность, сектор экономики, источник данных, частота обновления.
Данные исследователям доступны после авторизации и, в принципе, именно они являются аудиторией этого портала.
Это пример, использования CKAN как Data Management System (DMS), многие порталы данных в мире создавались по той же модели, когда CKAN используется как хранилище метаданных и данных, а над ним строятся разные интерфейсы.
Ссылки:
[1] https://indiadataportal.com/
[2] https://ckan.indiadataportal.com/
#opendata #datacatalogs #datasets #india
Интересен тем что работает на собственном движке поверх каталога открытых данных CKAN. Сами данные хранятся в связанном с ним каталогом данных [2], а основной веб сайт использует API каталога данных для создания дополнительных фильтров при поиске данных, таких как гранулярность, сектор экономики, источник данных, частота обновления.
Данные исследователям доступны после авторизации и, в принципе, именно они являются аудиторией этого портала.
Это пример, использования CKAN как Data Management System (DMS), многие порталы данных в мире создавались по той же модели, когда CKAN используется как хранилище метаданных и данных, а над ним строятся разные интерфейсы.
Ссылки:
[1] https://indiadataportal.com/
[2] https://ckan.indiadataportal.com/
#opendata #datacatalogs #datasets #india
В рубрике интересных наборов и каталогов данных, источники данных по блокчейну, Web 3
- Blockсhair datasets [1] дампы всех основных криптовалют: Bitcoin, Bitcoin Cash, Zcash, ERC-20, Ethereum, Dogecoin, Litecoin в виде коллекции сжатых TSV файлов
- Bitcoin Blockchain Historical Data [2] датасет на Kaggle адаптированный под data science прямо на платформе, только Bitcoin
- AWS Public Blockchain Data [3] дампы блокчейнов Bitcoin и Ethereum сразу в формате parquet
- Google Cloud Blockchain Analytics [4] данные и интерфейс работы с ними для 24 разных криптовалют на платформе Google Cloud
Ссылки:
[1] https://blockchair.com/dumps
[2] https://www.kaggle.com/datasets/bigquery/bitcoin-blockchain
[3] https://registry.opendata.aws/aws-public-blockchain/
[4] https://cloud.google.com/blockchain-analytics/docs/supported-datasets
#opendata #datasets #data #datacatalogs
- Blockсhair datasets [1] дампы всех основных криптовалют: Bitcoin, Bitcoin Cash, Zcash, ERC-20, Ethereum, Dogecoin, Litecoin в виде коллекции сжатых TSV файлов
- Bitcoin Blockchain Historical Data [2] датасет на Kaggle адаптированный под data science прямо на платформе, только Bitcoin
- AWS Public Blockchain Data [3] дампы блокчейнов Bitcoin и Ethereum сразу в формате parquet
- Google Cloud Blockchain Analytics [4] данные и интерфейс работы с ними для 24 разных криптовалют на платформе Google Cloud
Ссылки:
[1] https://blockchair.com/dumps
[2] https://www.kaggle.com/datasets/bigquery/bitcoin-blockchain
[3] https://registry.opendata.aws/aws-public-blockchain/
[4] https://cloud.google.com/blockchain-analytics/docs/supported-datasets
#opendata #datasets #data #datacatalogs
Blockchair
Ultimate Cryptocurrency Dataset by Blockchair
Comprehensive dataset across top cryptocurrencies
Давно пишу по кусочкам лонгрид про природу данных и наборов данных, про то как отличается их восприятие людьми разных профессий и потребностей и как от того где они применяются "плавает" это определение.
Самый простой пример - это всегда ли данные машиночитаемы? К примеру, данные в виде файлов csv, json, xml и тд. всегда можно рассматривать как машиночитаемые, а, к примеру, тексты, видео и изображения нет. Но если собрать тысячи, сотни тысяч текстов или фотографий, то вот, пожалуйста, датасет для обучения в data science. То есть данные не всегда машиночитаемы?
Другой пример, конфигурационные файлы приложений распространённо имеют машиночитаемые форматы как раз те же самые json, xml, yaml и ряд других. Делает ли это их наборами данных? Вообще-то нет, потому что не прослеживается модели их повторного использования.
Может быть именно повторное использование и востребованность тогда является главным критерием определения набора данных? В классических определениях набора данных это, или набор таблиц, или единица измерения информации опубликованной в открытом доступе.
А как рассматривать API? К примеру, в геоданных массово данные доступны не в виде файлов, а в виде API по стандартам OGC или ряду проприетарных. Их принято относить к наборам данных. Но там разные API, к примеру, WFS, WMS без сомнений можно относить к data api (API для доступа к данным), а какие-нибудь WPS уже точно не data api, а процессные API для обработки данных, а WCS что ближе к не API для данных, с помогающих в работе с геоинструментами. Для аудитории специалистов по геоанализу они нужны, но как бы не данные.
В научной среде репозитории данных очень часто совмещены с репозиториями ПО, во всяком случае для репозиториев общего типа. Главная идея тут в том что без ПО, причём конкретной версии, сложно повторить эксперимент/процессы в результате которых были данные получены.
Ещё пример, опять же про не машиночитаемость. С точки зрения архивации данных важно хранить данные в любой форме за условно любой период времени. К примеру, статистический сборник 19го века. Формально не машиночитаем, по факту исследователям статистикам может быть нужен? Безусловно. На многих порталах открытых данных опубликованы тысячи таких сборников как открытые данные. Но они не машиночитаемые. В такой логике к, примеру, Библиотека конгресса США или Национальная электронная библиотека в РФ это тоже каталоги данных? Или источники данных? Даже если они не машиночитаемы?
Всё это возвращает к размышлениям о том что наборы данных - это то о чём можно говорить как об опубликованным со смыслом (publish with the purpose), с пониманием аудитории и хотя бы одного сценария их применения.
В практическом применении это напрямую затрагивает, например, то какие данные индексируют и не индексируют поисковые системы. К примеру, Google Dataset Search не индексирует геоданные, они медленно, то уверенно склоняются к поисковику для исследователей. Научные поисковики вроде OpenAIRE, DataCite или BASE с самого начала декларируют что это не только поиск по данным, а по любым результатам научной деятельности до которых просто дотянутся. Для data science поисковика нет поскольку всего два основных ресурса, Hugging Face и Kaggle.
В Dateno индексируются геоданные (гео API) и порталы индикаторов причём с расширенной трактовкой индикаторов как то что датасетом является индикатор + страна во всех случаях когда можно сделать постоянную ссылку на файл или API. Так делают многие создатели этих порталов с индикаторами уже давно. Но это тоже некая форма интерпретации исходя из потребности и поиска пользователей.
Всё это, отчасти, философский вопрос о том строить ли поисковую систему по данным или поисковую систему для тех кто работает с данными. Разница между двумя этими понятиями весьма существенна. И поэтому она начинается с собственного определения того что такое набор данных
#thoughts #data #datasets
Самый простой пример - это всегда ли данные машиночитаемы? К примеру, данные в виде файлов csv, json, xml и тд. всегда можно рассматривать как машиночитаемые, а, к примеру, тексты, видео и изображения нет. Но если собрать тысячи, сотни тысяч текстов или фотографий, то вот, пожалуйста, датасет для обучения в data science. То есть данные не всегда машиночитаемы?
Другой пример, конфигурационные файлы приложений распространённо имеют машиночитаемые форматы как раз те же самые json, xml, yaml и ряд других. Делает ли это их наборами данных? Вообще-то нет, потому что не прослеживается модели их повторного использования.
Может быть именно повторное использование и востребованность тогда является главным критерием определения набора данных? В классических определениях набора данных это, или набор таблиц, или единица измерения информации опубликованной в открытом доступе.
А как рассматривать API? К примеру, в геоданных массово данные доступны не в виде файлов, а в виде API по стандартам OGC или ряду проприетарных. Их принято относить к наборам данных. Но там разные API, к примеру, WFS, WMS без сомнений можно относить к data api (API для доступа к данным), а какие-нибудь WPS уже точно не data api, а процессные API для обработки данных, а WCS что ближе к не API для данных, с помогающих в работе с геоинструментами. Для аудитории специалистов по геоанализу они нужны, но как бы не данные.
В научной среде репозитории данных очень часто совмещены с репозиториями ПО, во всяком случае для репозиториев общего типа. Главная идея тут в том что без ПО, причём конкретной версии, сложно повторить эксперимент/процессы в результате которых были данные получены.
Ещё пример, опять же про не машиночитаемость. С точки зрения архивации данных важно хранить данные в любой форме за условно любой период времени. К примеру, статистический сборник 19го века. Формально не машиночитаем, по факту исследователям статистикам может быть нужен? Безусловно. На многих порталах открытых данных опубликованы тысячи таких сборников как открытые данные. Но они не машиночитаемые. В такой логике к, примеру, Библиотека конгресса США или Национальная электронная библиотека в РФ это тоже каталоги данных? Или источники данных? Даже если они не машиночитаемы?
Всё это возвращает к размышлениям о том что наборы данных - это то о чём можно говорить как об опубликованным со смыслом (publish with the purpose), с пониманием аудитории и хотя бы одного сценария их применения.
В практическом применении это напрямую затрагивает, например, то какие данные индексируют и не индексируют поисковые системы. К примеру, Google Dataset Search не индексирует геоданные, они медленно, то уверенно склоняются к поисковику для исследователей. Научные поисковики вроде OpenAIRE, DataCite или BASE с самого начала декларируют что это не только поиск по данным, а по любым результатам научной деятельности до которых просто дотянутся. Для data science поисковика нет поскольку всего два основных ресурса, Hugging Face и Kaggle.
В Dateno индексируются геоданные (гео API) и порталы индикаторов причём с расширенной трактовкой индикаторов как то что датасетом является индикатор + страна во всех случаях когда можно сделать постоянную ссылку на файл или API. Так делают многие создатели этих порталов с индикаторами уже давно. Но это тоже некая форма интерпретации исходя из потребности и поиска пользователей.
Всё это, отчасти, философский вопрос о том строить ли поисковую систему по данным или поисковую систему для тех кто работает с данными. Разница между двумя этими понятиями весьма существенна. И поэтому она начинается с собственного определения того что такое набор данных
#thoughts #data #datasets
Еврокомиссия 24 сентября запустила Public Procurement Data Space (PPDS) [1] инициативу по интеграции данных о государственных закупках в странах Евросоюза. Инициатива эта является продолжением и развитием Европейской стратегии данных (European strategy for data) [2] от 2020 года где тематика доступности данных о закупках была явно обозначена.
Из любопытного:
1. В основе технологий PPDS лежит онтология eProcurement Ontology (ePO) [3] и технологии Knowledge Graphs с реализацией аналитической базы данных с интерфейсом SPARQL
2. У проекта есть открытые репозитории, в основном с проверка
ми качества данных и индикаторами [4]
3. А также они в открытый доступ отдают дашборды с оценками качества данных [5], реализованы дашборды на Superset
Собственно чего в PPDS пока нехватает - это самих данных, систематизированных и пригодных для автоматической загрузки и обработки.
Ссылки:
[1] https://www.public-procurement-data-space.europa.eu/en
[2] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0066
[3] https://docs.ted.europa.eu/EPO/latest/index.html
[4] https://eproc.pages.code.europa.eu/ppds/pages/
[5] https://www.public-procurement-data-space.europa.eu/en/dashboards
#opendata #europe #procurement #data #datasets
Из любопытного:
1. В основе технологий PPDS лежит онтология eProcurement Ontology (ePO) [3] и технологии Knowledge Graphs с реализацией аналитической базы данных с интерфейсом SPARQL
2. У проекта есть открытые репозитории, в основном с проверка
ми качества данных и индикаторами [4]
3. А также они в открытый доступ отдают дашборды с оценками качества данных [5], реализованы дашборды на Superset
Собственно чего в PPDS пока нехватает - это самих данных, систематизированных и пригодных для автоматической загрузки и обработки.
Ссылки:
[1] https://www.public-procurement-data-space.europa.eu/en
[2] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0066
[3] https://docs.ted.europa.eu/EPO/latest/index.html
[4] https://eproc.pages.code.europa.eu/ppds/pages/
[5] https://www.public-procurement-data-space.europa.eu/en/dashboards
#opendata #europe #procurement #data #datasets
В рубрике интересных больших наборов данных
Open Buildings 2.5D Temporal Dataset [1] от команды Google Research. Отражает изменения в наличии зданий, их высоте и другим показателям по странам Африки, Южной Азии, Юго-Восточной Азии, Латинской Америки и Карибов за 2016-2023 годы.
О нём же подробнее в блоге Google Research [2].
А также можно увидеть его сразу на карте [3]
Применений видится множество, в первую очередь - это прослеживание урбанизации/деурбанизации, мониторинг корреляции изменений с глобальными событиями (землетрясениями, пандемиями, засухами, миграцией, войнами и тд.)
Ссылки:
[1] https://sites.research.google/gr/open-buildings/temporal/
[2] https://research.google/blog/open-buildings-25d-temporal-dataset-tracks-building-changes-across-the-global-south/
[3] https://mmeka-ee.projects.earthengine.app/view/open-buildings-temporal-dataset
#opendata #datasets #spatialdata #geodata #google #googleearth
Open Buildings 2.5D Temporal Dataset [1] от команды Google Research. Отражает изменения в наличии зданий, их высоте и другим показателям по странам Африки, Южной Азии, Юго-Восточной Азии, Латинской Америки и Карибов за 2016-2023 годы.
О нём же подробнее в блоге Google Research [2].
А также можно увидеть его сразу на карте [3]
Применений видится множество, в первую очередь - это прослеживание урбанизации/деурбанизации, мониторинг корреляции изменений с глобальными событиями (землетрясениями, пандемиями, засухами, миграцией, войнами и тд.)
Ссылки:
[1] https://sites.research.google/gr/open-buildings/temporal/
[2] https://research.google/blog/open-buildings-25d-temporal-dataset-tracks-building-changes-across-the-global-south/
[3] https://mmeka-ee.projects.earthengine.app/view/open-buildings-temporal-dataset
#opendata #datasets #spatialdata #geodata #google #googleearth
Я в ближайшие дни больше расскажу про большое обновление в Dateno.io которое мы недавно произвели, а там, в первую очередь, большое обновление индекса на 4 миллиона датасетов и личный кабинет с API [1].
А пока немного о том что есть в Dateno и нет в большинстве поисковиков по данным. Это то что Dateno теперь крупнейший поисковик по статистическим индикаторам по всему миру. Сейчас в базе данных более чем 6.7 миллионов индикаторов, в привязке к источникам данных, странам, темам и многому другому.
Основные источники статистики - это статистические порталы ряда стран и глобальные каталоги индикаторов от Всемирного Банка, Банка международных расчётов и ряда структур ООН.
Этих источников, на самом деле, значительно больше и до конца года мы их добавим. Есть ещё пара десятков глобальных и около сотни национальных порталов со статистикой.
Но, далеко не со всеми из них работать просто, и вот почему:
1. Далеко не все порталы статистики создаются на типовом ПО, основное типовое ПО для статистики это PxWeb и .Stat Suite. Сайты на базе PxWeb уже индексируется в Dateno, а на .Stat Suite будут в скором будущем. Но таковых не так много
2. Даже если порталы сделаны на одном из типовых ПО, не всегда они пригодны используют актуальные версии ПО. Например, статбанк Армении [2] работает на ПО PxWeb старой версии и чтобы его проиндексировать надо писать специальный парсер, потому что стандартное API не работает.
3. Далеко не все, даже лучшие международные примеры порталов статистики, предоставляют её в стандартизированных форматах и с возможностью дать ссылку на конкретный индикатор. Есть прекрасные примеры, вроде портала Банка международных расчётов [3], но и плохих примеров много, вроде портала статистики ООН [4]
Тем не менее и текущие 6.7 миллионов индикаторов - это много. Это возможность поиска страновой статистики удобным образом. К примеру, для поиска статистики по тем странам где нет порталов открытых данных или удобных сайтов статслужб.
В это обновление не попали данные Евростата и ЕЦБ, ещё нескольких структур ООН и не только, но они попадут в следующие и тогда число индикаторов достигнет 10-12 миллионов, а может быть и больше;)
А пока, если Вы ищете статистику, то Dateno - это хорошее место чтобы начать её искать.
Далее, я расскажу про то как работать с API Dateno в примерах и поиске датасетов по нестандартным темам, таким как криптовалюта, извлечение данных из документов и превращение банков документов в порталы данных и не только.
Ссылки:
[1] https://api.dateno.io
[2] https://statbank.armstat.am
[3] https://data.bis.org
[4] https://data.un.org
#opendata #dateno #statistics #datasets
А пока немного о том что есть в Dateno и нет в большинстве поисковиков по данным. Это то что Dateno теперь крупнейший поисковик по статистическим индикаторам по всему миру. Сейчас в базе данных более чем 6.7 миллионов индикаторов, в привязке к источникам данных, странам, темам и многому другому.
Основные источники статистики - это статистические порталы ряда стран и глобальные каталоги индикаторов от Всемирного Банка, Банка международных расчётов и ряда структур ООН.
Этих источников, на самом деле, значительно больше и до конца года мы их добавим. Есть ещё пара десятков глобальных и около сотни национальных порталов со статистикой.
Но, далеко не со всеми из них работать просто, и вот почему:
1. Далеко не все порталы статистики создаются на типовом ПО, основное типовое ПО для статистики это PxWeb и .Stat Suite. Сайты на базе PxWeb уже индексируется в Dateno, а на .Stat Suite будут в скором будущем. Но таковых не так много
2. Даже если порталы сделаны на одном из типовых ПО, не всегда они пригодны используют актуальные версии ПО. Например, статбанк Армении [2] работает на ПО PxWeb старой версии и чтобы его проиндексировать надо писать специальный парсер, потому что стандартное API не работает.
3. Далеко не все, даже лучшие международные примеры порталов статистики, предоставляют её в стандартизированных форматах и с возможностью дать ссылку на конкретный индикатор. Есть прекрасные примеры, вроде портала Банка международных расчётов [3], но и плохих примеров много, вроде портала статистики ООН [4]
Тем не менее и текущие 6.7 миллионов индикаторов - это много. Это возможность поиска страновой статистики удобным образом. К примеру, для поиска статистики по тем странам где нет порталов открытых данных или удобных сайтов статслужб.
В это обновление не попали данные Евростата и ЕЦБ, ещё нескольких структур ООН и не только, но они попадут в следующие и тогда число индикаторов достигнет 10-12 миллионов, а может быть и больше;)
А пока, если Вы ищете статистику, то Dateno - это хорошее место чтобы начать её искать.
Далее, я расскажу про то как работать с API Dateno в примерах и поиске датасетов по нестандартным темам, таким как криптовалюта, извлечение данных из документов и превращение банков документов в порталы данных и не только.
Ссылки:
[1] https://api.dateno.io
[2] https://statbank.armstat.am
[3] https://data.bis.org
[4] https://data.un.org
#opendata #dateno #statistics #datasets
Свежая AI модель предсказания погоды от NASA и IBM [1] причём модель обучена была на множестве GPU, а запустить её можно на настольном компьютере.
Причём модель эта была построена на базе датасета MERRA-2 [2] с более чем 40 годами наблюдения за Землёй
Ссылки:
[1] https://research.ibm.com/blog/foundation-model-weather-climate
[2] https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
#opendata #datasets #data #climate #ai
Причём модель эта была построена на базе датасета MERRA-2 [2] с более чем 40 годами наблюдения за Землёй
Ссылки:
[1] https://research.ibm.com/blog/foundation-model-weather-climate
[2] https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
#opendata #datasets #data #climate #ai
Могу сказать что один из самых частых вопросов по Dateno - это как сделать чтобы мои данные были проиндексированы? Вопрос этот одновременно очень простой и сложный.
Модель индексирования данных в Dateno основано на доверии к источникам данных. Вместо того чтобы сканировать весь интернет на наличие датасетов, существует реестр каталогов данных [1] в котором более 10 тысяч каталогов и куча метаданных о них. Чуть более половины этих каталогов данных уже проиндексированы и доля проиндексированных постепенно растёт.
Индексирование датасетов таким образом, на самом деле, сложнее чем попытаться воспроизвести краулер Google Data Search (GDS), потому что для такого краулера можно было бы просто взять индекс Common Crawl и регулярно обновлять метаданные оттуда. Ресурсоёмкая, но интеллектуально простая задача. Если идти таким путём то немедленно всплывают все проблемы с качеством данных, с тем что существенная часть датасетов публикуется только для SEO продвижения и так далее.
Индексирование каталогов же предполагает что кто-то уже провел работу по валидации того что этот датасет не полное фуфло, а что-то осмысленное.
Поэтому как проще всего опубликовать датасеты? Проще всего, либо опубликовать на одном из каталогов данных которые Dateno индексирует. Второй вариант - это развернуть собственный каталог данных и прислать на него ссылку. Но этот каталог должен работать на типовом ПО таком как CKAN [2], DKAN [3], JKAN [4], InvenioRDM [5] и ряде других. Если Вы публикуете не один набор данных, а множество то использование типового портала для их публикации - это хорошая практика. Например, в РФ от Инфокультуры мы создавали Хаб открытых данных [6], а в Армении Data Catalog Armenia [7], оба на базе движка CKAN как наиболее продвинутого для публикации данных.
У публичных каталогов открытых данных, при этом, есть свои ограничения. К примеру, мы закрыли регистрацию пользователей на наших CKAN порталах из-за бесконечного объёма спама. А то есть, если Вы хотите там что-то опубликовать, то надо написать админам чтобы они Вас там зарегистрировали. Спамеры - это неприятная часть нашей жизни и ещё один довод в пользу создания собственных каталогов данных.
Тем не менее у нас в Dateno постоянно крутится идея того что иногда чтобы что-то проиндексировать, надо это что-то собрать в каталог. А Dateno не каталог, а именно поисковик. Например, крипто данные разбросаны по интернету. Возможно стоит создать каталог крипто данных и уже его проиндексировать в Dateno. Он будет указывать на первоисточники, конечно, но будет пополняем. Хорошая ли это идея? Пока непонятно, если бы был подтверждённый исследовательский интерес к теме то можно было бы хоть сразу запилить каталог данных для исследователей по этой теме.
А вот другой пример, многие госорганы в разных странах массово публикуют документы. И, предположим, у нас есть код превращающий таблицы из документов в машиночитаемые файлы. Но вот так просто их не поместить сейчас в Dateno потому что Dateno содержит только ссылки на ресурсы, но не сами файлы. Расширять ли Dateno или делать промежуточный каталог данных ?
Есть немало таких примеров с необходимостью промежуточных каталогов для существенного расширения доступности многих данных. И это уже куда больше чем просто индексация данных, де-факто это создание датасетов. Техника с помощью которой мы можем добавить в поисковый индекс ещё десяток миллионов карточек датасетов без феноменальных усилий.
Возвращаясь к публикации данных, Dateno - это поисковик. Задача его как продукта в повышении находимости данных. Всегда есть большой соблазн отклониться чуть в сторону, расширить границы продукта и добавить больше возможностей за пределами строго определённых фич. Публикация данных одна из таких возможностей, над которой, мы конечно же думаем.
Ссылки:
[1] https://dateno.io/registry
[2] https://ckan.org
[3] https://getdkan.org
[4] https://jkan.io
[5] https://inveniosoftware.org/products/rdm/
[6] https://hubofdata.ru
[7] https://data.opendata.am
#opendata #datasets #data #datasearch #dateno
Модель индексирования данных в Dateno основано на доверии к источникам данных. Вместо того чтобы сканировать весь интернет на наличие датасетов, существует реестр каталогов данных [1] в котором более 10 тысяч каталогов и куча метаданных о них. Чуть более половины этих каталогов данных уже проиндексированы и доля проиндексированных постепенно растёт.
Индексирование датасетов таким образом, на самом деле, сложнее чем попытаться воспроизвести краулер Google Data Search (GDS), потому что для такого краулера можно было бы просто взять индекс Common Crawl и регулярно обновлять метаданные оттуда. Ресурсоёмкая, но интеллектуально простая задача. Если идти таким путём то немедленно всплывают все проблемы с качеством данных, с тем что существенная часть датасетов публикуется только для SEO продвижения и так далее.
Индексирование каталогов же предполагает что кто-то уже провел работу по валидации того что этот датасет не полное фуфло, а что-то осмысленное.
Поэтому как проще всего опубликовать датасеты? Проще всего, либо опубликовать на одном из каталогов данных которые Dateno индексирует. Второй вариант - это развернуть собственный каталог данных и прислать на него ссылку. Но этот каталог должен работать на типовом ПО таком как CKAN [2], DKAN [3], JKAN [4], InvenioRDM [5] и ряде других. Если Вы публикуете не один набор данных, а множество то использование типового портала для их публикации - это хорошая практика. Например, в РФ от Инфокультуры мы создавали Хаб открытых данных [6], а в Армении Data Catalog Armenia [7], оба на базе движка CKAN как наиболее продвинутого для публикации данных.
У публичных каталогов открытых данных, при этом, есть свои ограничения. К примеру, мы закрыли регистрацию пользователей на наших CKAN порталах из-за бесконечного объёма спама. А то есть, если Вы хотите там что-то опубликовать, то надо написать админам чтобы они Вас там зарегистрировали. Спамеры - это неприятная часть нашей жизни и ещё один довод в пользу создания собственных каталогов данных.
Тем не менее у нас в Dateno постоянно крутится идея того что иногда чтобы что-то проиндексировать, надо это что-то собрать в каталог. А Dateno не каталог, а именно поисковик. Например, крипто данные разбросаны по интернету. Возможно стоит создать каталог крипто данных и уже его проиндексировать в Dateno. Он будет указывать на первоисточники, конечно, но будет пополняем. Хорошая ли это идея? Пока непонятно, если бы был подтверждённый исследовательский интерес к теме то можно было бы хоть сразу запилить каталог данных для исследователей по этой теме.
А вот другой пример, многие госорганы в разных странах массово публикуют документы. И, предположим, у нас есть код превращающий таблицы из документов в машиночитаемые файлы. Но вот так просто их не поместить сейчас в Dateno потому что Dateno содержит только ссылки на ресурсы, но не сами файлы. Расширять ли Dateno или делать промежуточный каталог данных ?
Есть немало таких примеров с необходимостью промежуточных каталогов для существенного расширения доступности многих данных. И это уже куда больше чем просто индексация данных, де-факто это создание датасетов. Техника с помощью которой мы можем добавить в поисковый индекс ещё десяток миллионов карточек датасетов без феноменальных усилий.
Возвращаясь к публикации данных, Dateno - это поисковик. Задача его как продукта в повышении находимости данных. Всегда есть большой соблазн отклониться чуть в сторону, расширить границы продукта и добавить больше возможностей за пределами строго определённых фич. Публикация данных одна из таких возможностей, над которой, мы конечно же думаем.
Ссылки:
[1] https://dateno.io/registry
[2] https://ckan.org
[3] https://getdkan.org
[4] https://jkan.io
[5] https://inveniosoftware.org/products/rdm/
[6] https://hubofdata.ru
[7] https://data.opendata.am
#opendata #datasets #data #datasearch #dateno
К вопросу о том как хорошо и правильно публиковать данные могу привести в пример проект OpenSanctions [1] который изначально создавался как полностью открытый, сейчас развивается как открытый для некоммерческого использования, но это касается условий юридических, а технически там всё очень грамотно.
Это крупнейший в мире открытый агрегатор всех санкционных датасетов и связанных с ними данных, например, реестров чиновников, членов парламентов, олигархов и других PEPs'ов (Politically exposed persons). Там есть и санкции против РФ, и против Ирана, и против десятков других стран и внутристрановые списки и ограничения.
Чем интересен их подход?
1. Все датасеты гармонизированы к набору схем и предоставляются сразу через стандартизированное API и дампами файлов для массовой выгрузки. Файлы не генерируются на лету, а сразу предсобраны и актуализируются при обновлении
2. Команда ведёт публичный changelog [2] всех изменений в структурах данных. Это как блог, но узкотематический, полезный для понимания внутреннего устройства.
3. Они же отдают массовые (bulk) выгрузки и дельты изменений [3]
Конечно, правильно сравнивать их сервис с коммерческими продуктами торговли данными и предоставления доступа к ним. Можно сравнивать к примеру, с Dune.com [4], сервисом доступа к крипто данным для аналитиков или с Databento [5] сервисом торговли данными для финансовых рынков.
Сравнивать с ними корректно потому что это коммерческие сервисы и на ту же аудиторию, тех кто работает с финансами или оказывает финансовые услуги. Разница лишь в происхождении, команда Open Sanctions вышла из среды открытого кода и открытых данных, поэтому, к примеру, не могут, а может и не хотят, закрыть свой продукт полностью.
У меня в этом смысле к их проекту двойное отношение.
Как вовлечённый в открытые данные уже 15 лет я, конечно, не одобряю не открытые лицензии и лично сам бы в их проект ничего контрибьютить бы не стал. Он, формально, уже не открытый.
А как предприниматель создающий собственные, в том числе коммерческие, проекты на данных и вокруг них вроде того же Dateno.io я их прекрасно понимаю. Устойчивое финансирование проектов по открытости встречается крайне редко и чаще всего бывает в долгосрочных научных проектах и научной инфраструктуре.
Ссылки:
[1] https://www.opensanctions.org
[2] https://www.opensanctions.org/changelog/
[3] https://www.opensanctions.org/faq/80/bulk-deltas/
[4] https://dune.com
[5] https://databento.com
#opendata #datasets #data
Это крупнейший в мире открытый агрегатор всех санкционных датасетов и связанных с ними данных, например, реестров чиновников, членов парламентов, олигархов и других PEPs'ов (Politically exposed persons). Там есть и санкции против РФ, и против Ирана, и против десятков других стран и внутристрановые списки и ограничения.
Чем интересен их подход?
1. Все датасеты гармонизированы к набору схем и предоставляются сразу через стандартизированное API и дампами файлов для массовой выгрузки. Файлы не генерируются на лету, а сразу предсобраны и актуализируются при обновлении
2. Команда ведёт публичный changelog [2] всех изменений в структурах данных. Это как блог, но узкотематический, полезный для понимания внутреннего устройства.
3. Они же отдают массовые (bulk) выгрузки и дельты изменений [3]
Конечно, правильно сравнивать их сервис с коммерческими продуктами торговли данными и предоставления доступа к ним. Можно сравнивать к примеру, с Dune.com [4], сервисом доступа к крипто данным для аналитиков или с Databento [5] сервисом торговли данными для финансовых рынков.
Сравнивать с ними корректно потому что это коммерческие сервисы и на ту же аудиторию, тех кто работает с финансами или оказывает финансовые услуги. Разница лишь в происхождении, команда Open Sanctions вышла из среды открытого кода и открытых данных, поэтому, к примеру, не могут, а может и не хотят, закрыть свой продукт полностью.
У меня в этом смысле к их проекту двойное отношение.
Как вовлечённый в открытые данные уже 15 лет я, конечно, не одобряю не открытые лицензии и лично сам бы в их проект ничего контрибьютить бы не стал. Он, формально, уже не открытый.
А как предприниматель создающий собственные, в том числе коммерческие, проекты на данных и вокруг них вроде того же Dateno.io я их прекрасно понимаю. Устойчивое финансирование проектов по открытости встречается крайне редко и чаще всего бывает в долгосрочных научных проектах и научной инфраструктуре.
Ссылки:
[1] https://www.opensanctions.org
[2] https://www.opensanctions.org/changelog/
[3] https://www.opensanctions.org/faq/80/bulk-deltas/
[4] https://dune.com
[5] https://databento.com
#opendata #datasets #data
OpenSanctions.org
OpenSanctions: Find sanctions targets and persons of interest
OpenSanctions helps investigators find leads, allows companies to manage risk and enables technologists to build data-driven products.
В рубрике как это устроено у них перепись в Великобритании проходила 3 года назад, в 2021 году, с того момента уже давно доступны датасеты и многие региональные инструменты просмотра сведений о переписи. Например, в Северной Ирландии статистическое агентство NISRA предоставляет доступ к навигатору по данным переписи с детализацией до переписных участков [1], а также их данные доступны на их же портале открытых данных [2].
Причём можно увидеть что многие переписный участки - это всего несколько сотен сельских жителей, 2-3 села, максимум.
А статистика там довольно подробная, я бы сказал практически полезная для любой социологии.
Что можно добавить. Если в Вашей стране прошла перепись и она недоступна хотя бы в таком виде, то может быть переписи не проходило?
Ссылки:
[1] https://explore.nisra.gov.uk/area-explorer-2021/
[2] https://data.nisra.gov.uk/
#opendata #datasets #ireland #uk #northernireland #census
Причём можно увидеть что многие переписный участки - это всего несколько сотен сельских жителей, 2-3 села, максимум.
А статистика там довольно подробная, я бы сказал практически полезная для любой социологии.
Что можно добавить. Если в Вашей стране прошла перепись и она недоступна хотя бы в таком виде, то может быть переписи не проходило?
Ссылки:
[1] https://explore.nisra.gov.uk/area-explorer-2021/
[2] https://data.nisra.gov.uk/
#opendata #datasets #ireland #uk #northernireland #census