Вы будете смеяться, но #ученые правда изо всех сил работают над вопросом, сколько роботов поместится на кончике иглы🤓
По-научному, эта область исследований называется "оптимизацией доставки". Хотелось бы, чтобы вводимые в кровь лекарства попадали не куда попало (в реальности нашего организма "куда попало" значит "печень")- а ровно куда надо. Например, в опухоль. А в случае вакцинации, например, в лимфоузел💉
Доставка лекарств прямо в орган фармацевтическими роботами пока из области фантастики.
Ну то есть сделать-то такие микроустройства можно, и даже сделать их биодеградируемыми тоже можно. Проблема заключается в батарейках. Существующие батарейки тяжелые, и робот размером с бактерию их на себе не потянет🤔
Хитромудрые китайские ученые Миньминь Ву и Тао Луо придумали как заставить мини-роботиков передвигаться в потоке крови за счет энергии внешней. Их машинки выглядят как гибрид ракеты и таракана, но только с парочкой водоотталкивающих полостей на спине🙃
Перед погружением в жидкость такой роботизированный пловец захватывает в каждую из полостей по воздушному пузырю. Если жидкость - это #кровь, бегущая по сосудам, то достаточно будет провести по коже больного щупом ультразвукового аппарата, как в пузырьках создадутся вихревые потоки, и начнут подталкивать робота фармдоставки вперед.
А если мы возьмем не один щуп, а два, то #робот сможет менять направление - на каждой развилке сосуда мы сможем выбрать, в какую сторону повернуть. В основание робота-пирамидки мы зальем химиотерапевтическое средство, а на морду намажем антитела, которые позволят биомашинке прилипнуть лишь к опухолевой ткани, минуя ткани нормальные👍
Следующая задача - научить этих роботов уворачиваться от эритроцитов!
Как вам такие игрушки?
#лекарства #ротобы #фармацевтика https://pubs.rsc.org/en/content/articlelanding/2021/LC/D1LC00575H
По-научному, эта область исследований называется "оптимизацией доставки". Хотелось бы, чтобы вводимые в кровь лекарства попадали не куда попало (в реальности нашего организма "куда попало" значит "печень")- а ровно куда надо. Например, в опухоль. А в случае вакцинации, например, в лимфоузел💉
Доставка лекарств прямо в орган фармацевтическими роботами пока из области фантастики.
Ну то есть сделать-то такие микроустройства можно, и даже сделать их биодеградируемыми тоже можно. Проблема заключается в батарейках. Существующие батарейки тяжелые, и робот размером с бактерию их на себе не потянет🤔
Хитромудрые китайские ученые Миньминь Ву и Тао Луо придумали как заставить мини-роботиков передвигаться в потоке крови за счет энергии внешней. Их машинки выглядят как гибрид ракеты и таракана, но только с парочкой водоотталкивающих полостей на спине🙃
Перед погружением в жидкость такой роботизированный пловец захватывает в каждую из полостей по воздушному пузырю. Если жидкость - это #кровь, бегущая по сосудам, то достаточно будет провести по коже больного щупом ультразвукового аппарата, как в пузырьках создадутся вихревые потоки, и начнут подталкивать робота фармдоставки вперед.
А если мы возьмем не один щуп, а два, то #робот сможет менять направление - на каждой развилке сосуда мы сможем выбрать, в какую сторону повернуть. В основание робота-пирамидки мы зальем химиотерапевтическое средство, а на морду намажем антитела, которые позволят биомашинке прилипнуть лишь к опухолевой ткани, минуя ткани нормальные👍
Следующая задача - научить этих роботов уворачиваться от эритроцитов!
Как вам такие игрушки?
#лекарства #ротобы #фармацевтика https://pubs.rsc.org/en/content/articlelanding/2021/LC/D1LC00575H
pubs.rsc.org
Biologically inspired micro-robotic swimmers remotely controlled by ultrasound waves
We 3D print micro-robotic swimmers with the size of animal cells using a Nanoscribe. The micro-swimmers are powered by the microstreaming flows induced by the oscillating air bubbles entrapped within the micro-robotic swimmers. Previously, micro-swimmers…