DLeX: AI Python
22.8K subscribers
4.96K photos
1.22K videos
765 files
4.3K links
هوش‌مصنوعی و برنامه‌نویسی

ارتباط با نوید داریا در توییتر :
https://twitter.com/NaviDDariya

اراتباط با لی لی علوی در تلگرام :
@lilylawww
Download Telegram
Molecular dynamics is one of the booming Geometric DL areas where equivariant models show the best qualities. The two cool recent papers on that topic:

⚛️ Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations by Fu et al. introduces a new benchmark for molecular dynamics - in addition to MD17, the authors add datasets on modeling liquids (Water), peptides (Alanine dipeptide), and solid-state materials (LiPS). More importantly, apart from Energy as the main metric, the authors consider a wide range of physical properties like Stability, Diffusivity, and Radial Distribution Functions. Most SOTA molecular dynamics models were probed including SchNet, ForceNet, DimeNet, GemNet (-T and -dT), NequIP.

Density Functional Theory (DFT) calculations are one of the main workhorses of molecular dynamics (and account for a great deal of computing time in big clusters). DFT is O(n^3) to the input size though, so can ML help here? Learned Force Fields Are Ready For Ground State Catalyst Discovery by Schaarschmidt et al. present the experimental study of models of learned potentials - turns out GNNs can do a very good job in O(n) time!
🪐 For astrophysics aficionados: Mangrove: Learning Galaxy Properties from Merger Trees by Jespersen et al. apply GraphSAGE to merger trees of dark matter to predict a variety of galactic properties like stellar mass, cold gas mass, star formation rate, and even black hole mass. The paper is heavy on the terminology of astrophysics but pretty easy in terms of GNN parameterization and training. Mangrove works 4-9 orders of magnitude faster than standard models (that is, 10 000 - 1 000 000 000 times faster). Experimental charts are pieces of art that you can hang on a wall.

🤖 Compositional Semantic Parsing with Large Language Models by Drozdov, Schärli et al. pretty much solve the compositional semantic parsing task (natural language query - structured query like SPARQL) using only code-davinci-002 language model from OpenAI (which is InstructGPT fine-tuned on code). No need for hefty tailored semantic parsing models - turns out a smart extension of the Chain-of-thought prompting (aka "let's think step by step") devised as Least-to-Most prompting (where we first answer easy subproblems before generating a full query) yields whopping 95% accuracy even on hardest Compositional Freebase Questions (CFQ) dataset. CFQ was introduced at ICLR 2020, and just after two years LMs cracked this task - looks like it's time for the new, even more complex dataset.

#مقاله
Forwarded from Meysam
نگارش نسخه دوم کتاب:
Mastering Transformers
رو شروع کردیم.
دوستانی که نسخه قبلی رو خوندن و اگر موضوعی یا مطلبی به نظرتون جذاب میاد و فکر میکنید که باید اضافه بشه بفرمایید خوشحال میشم نظراتتون رو بدونم.

@ai_person
سلام به همه دوستان یک سایتی با عنوان 1500 در حال انتشار در کانالهای تلگرامی و اینستاگرامی هست به هیچ عنوان روی این سایت کلیک نکنید و تاکید میشود که اصلا روی این سایت کلیک نکنید که عواقب جبران ناپذیر دارد.
Apply for Ph.D. positions starting this year!

We have room for several outstanding machine learning Ph.D. students to join our elite group at the University of Cambridge.

We are looking for:

leaders who want to realise their full potential and shape the future of machine learning
explorers who think boldly and prefer pushing boundaries to sitting still
builders who see projects through to completion and want to make a real-world impact
If you’re interested, please click the URL below. Note that we have already received a lot of applications. If you’re considering applying, earlier is definitely better!

Join the van der Schaar Lab:
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.vanderschaar-lab.com%2Fjoin&data=05%7C01%7Ctl522%40universityofcambridgecloud.onmicrosoft.com%7C25eb48cdd35849dde6d208dac1c40d86%7C49a50445bdfa4b79ade3547b4f3986e9%7C1%7C0%7C638035345048429672%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=koklpmvj4TDjLmx8OXWKFUyWVlKRA%2B%2FzuRstdljgIbI%3D&reserved=0

#اپلای
This media is not supported in your browser
VIEW IN TELEGRAM
مدل زبانی خیلی بزرگ Galactica که می‌تواند:
Can summarize academic literature, solve math problems, generate Wiki articles, write scientific code, annotate molecules and proteins, and more.

To accelerate science, we open source all models including the 120 billion model with no friction. You can access them here.

galactica.org/paper.pdf

Explore and get weights: galactica.org

#مقاله

✳️ @AI_Python
Versatile Diffusion: Text, Images and Variations All in One Diffusion Model

🖥 Github

🗒 Paper

Demo

🖥 Dataset
https://huggingface.co/spaces/shi-labs/Versatile-Diffusion
#مقاله

✳️ @AI_Python
Data Science

Python Tutorial for Beginners - Learn Python Programming from Scratch
Data Science with Python for Beginners - Full Course
Image Analysis with Convolutional Neural Networks and TensorFlow

https://www.youtube.com/playlist?list=PL7mOFdpoBB6QiW3_n7aKn_eHTCCftPJLw

#علم_داده #منابع #آموزش_کلاسی #فیلم
✳️ @AI_Python
1st Two Lessons of From Deep Learning Foundations to Stable Diffusion

👉 https://www.fast.ai/posts/part2-2022-preview.html

#منابع

✳️ @AI_Python
Forwarded from Meysam
iScienceLuvr-thread-tivitiko.pdf
1 MB
مدلهای مبتنی بر دیفیوژن چطوری کار می‌کنند ؟


Link: https://twitter.com/iScienceLuvr/status/1592860019057250304

@ai_person
انتشار کورس رایگان پایتون دانشگاه هاروارد
🔰 فیلم کلاس

🔰 سایت استاد

#پایتون #منابع #کلاس_آموزشی #فیلم
#Python

✳️ @AI_Python
Forwarded from Meysam
جلسه اول از ارایه کتاب

designing machine learning systems

در حال حاضر درحال برگزاری است لطفا جوین بشید .

https://meet.google.com/nzj-pyds-wvv

پی‌نوشت: مال یه سری از بچه هاست دوست داشتید ببینید.
Forwarded from Meysam
Hugging face با همکاری آرکایو
قراره قابلیت دمو مدل و کارهای مربوط به مقاله را به آرکایو اضافه بکنند:
https://huggingface.co/blog/arxiv

@ai_person
🖥 Uni-Perceiver v2: A Generalist Model for Large-Scale Vision and Vision-Language Tasks

🖥 Github

🗒 Paper

➡️ Data

#مقاله

✳️ @AI_Python
لینک های مفید تحقیقاتی, دانلود مقالات, کتابها و جستجوی کنفرانسها

#مقاله #کنفرانس


✳️ @AI_Python
Forwarded from Meysam
اسم من میثمه،
در این کانال فقط چیزهایی که به نظر خودم جالب هستند رو پست میکنم.
هوش مصنوعی یکی از موضوعاتی هست که در موردش می‌نویسم.
دوست داشتید دنبال کنید دوست نداشتید میوت نکنید لفت بدید.
مرسی.

@ai_person