В исследовании, опубликованном к International Semantic Web Conference, Google Research проанализировал связи между датасетами, доступными в Интернет. Целью исследования заявлена стремление улучшить возможности поиска и использования данных, учитывая их сложные взаимоотношения.
Исследователи выделили 4 ключевые задачи, с которыми сталкиваются пользователи при работе с датасетами:
Чтобы классифицировать отношения между датасетами были использованы 2 основных типа связей: основанные на происхождении (например, версии и подмножества) и не связанные с происхождением (например, тематически похожие).
Для автоматического определения отношений между датасетами применяли 4 метода:
Schema.org - это семантическая разметка метаданных для поисковых ботов на веб-страницах.
Набор правил, разработанных для каждого типа отношений.
Метод машинного обучения, основанный на классификации.
Генеративная модель, также используемая для классификации.
Результаты исследования показали, что методы машинного обучения, GBDT и T5, превзошли эвристический подход в точности определения отношений. GBDT продемонстрировал наилучшие показатели F1 в различных категориях, T5 тоже
Однако, даже самые эффективные методы столкнулись с ограничениями из-за недостаточной полноты метаданных. Вывод - необходимость улучшения стандартов метаданных и более широкого использования schema.org для описания связей между датасетами.
@ai_machinelearning_big_data
#AI #ML #Google #Datasets #Search
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
В декабре 2014 года началась эпоха нейросетей в поисковике Яндекса: разработчики впервые применили их для поиска похожих изображений. За эти 10 лет технологии прошли впечатляющую эволюцию, изменив то, как мы ищем информацию каждый день.
2015 год принёс первый серьёзный прорыв: нейросети научились оценивать релевантность самой картинки запросу, а не только окружающего текста. Это стало началом большого пути.
Ключевые этапы эволюции:
⚠️ Технологии, начавшиеся как отдельные эксперименты, за десятилетие эволюционировали в единую систему умного поиска, которой мы пользуемся каждый день.
@ai_machinelearning_big_data
#AI #ML #Search
Please open Telegram to view this post
VIEW IN TELEGRAM
Тщательно отобранный список (Awesome List) с MCP серверами (Model Control Plane Servers).
MCP серверы являются микросервисами, которые могут быть использованы LLM для выполнения вашей задачи.
По сути это мост между LLM и внешним миром: сайтами, базами данных, файлами и сервисами и тд.
Коллекция из 300+ MCP-серверов для ИИ-агентов 100% oпенсорс.!
Здесь можно найти платины на все случаи жизни:
•Автоматизация Браузера
• Облачные Платформы
• Командная Строка
• Коммуникации
• Базы данных
• Инструменты Разработчика
• Файловые Системы
• Финансы
• Игры
• Службы определения местоположения
• Маркетинг
• Мониторинг
• Поиск
• Спорт
• Путешествия И Транспорт
• Другие инструменты и интеграций
@ai_machinelearning_big_data
#mcp #ai #agents #awesome
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Модель намеренно поощряется за настойчивость — если она делает retry и улучшает результат, это считается успехом.
Использует синтетические поисковые движки, которые заставляют модель перезапрашивать и улучшать свои ответы.
Обучается с помощью RL — формируя привычку "не сдаваться".
@ai_machinelearning_big_data
#LLM #Search #RL #AI #Meta #ReZero #NeverGiveUp #Llama3
Please open Telegram to view this post
VIEW IN TELEGRAM