Multivariate Probabilistic Time Series Forecasting with Informer
Efficient transformer-based model for LSTF.
Применение модели Informer от Hugging Face для задач многомерного вероятностного прогнозирования.
🤗Hugging face: https://huggingface.co/blog/informer
⏩ Paper: https://huggingface.co/docs/transformers/main/en/model_doc/informer
⭐️ Colab: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multivariate_informer.ipynb
💨 Dataset: https://huggingface.co/docs/datasets/v2.7.0/en/package_reference/main_classes#datasets.Dataset.set_transform
ai_machinelearning_big_data
Efficient transformer-based model for LSTF.
Применение модели Informer от Hugging Face для задач многомерного вероятностного прогнозирования.
🤗Hugging face: https://huggingface.co/blog/informer
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
В исследовании, опубликованном к International Semantic Web Conference, Google Research проанализировал связи между датасетами, доступными в Интернет. Целью исследования заявлена стремление улучшить возможности поиска и использования данных, учитывая их сложные взаимоотношения.
Исследователи выделили 4 ключевые задачи, с которыми сталкиваются пользователи при работе с датасетами:
Чтобы классифицировать отношения между датасетами были использованы 2 основных типа связей: основанные на происхождении (например, версии и подмножества) и не связанные с происхождением (например, тематически похожие).
Для автоматического определения отношений между датасетами применяли 4 метода:
Schema.org - это семантическая разметка метаданных для поисковых ботов на веб-страницах.
Набор правил, разработанных для каждого типа отношений.
Метод машинного обучения, основанный на классификации.
Генеративная модель, также используемая для классификации.
Результаты исследования показали, что методы машинного обучения, GBDT и T5, превзошли эвристический подход в точности определения отношений. GBDT продемонстрировал наилучшие показатели F1 в различных категориях, T5 тоже
Однако, даже самые эффективные методы столкнулись с ограничениями из-за недостаточной полноты метаданных. Вывод - необходимость улучшения стандартов метаданных и более широкого использования schema.org для описания связей между датасетами.
@ai_machinelearning_big_data
#AI #ML #Google #Datasets #Search
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
OpenCoder - это открытое и воспроизводимое семейство LLM для программирования, включающее 1,5B и 8B базовые и instruct версии, поддерживающее английский и китайский языки.
Семейство моделей OpenCoder обучалось с нуля на 2,5 трлн. лексем, состоящих на 90 % из сырого кода и на 10 % из веб-данных, связанных с кодом, и прошло отладку на более чем 4,5 млн. высококачественных примеров SFT, в итоге достигнув производительности топовых LLM с похожей специализацией.
В открытый доступ опубликованы не только веса моделей и код для инференса, но и датасеты, полный цикл обработки данных, результаты экспериментальной абляции и подробные протоколы обучения.
OpenCoder тщательно протестирован с помощью исследований абляции на различных стратегиях очистки данных и процессах обучения, включая эксперименты по дедупликации на уровне файлов и репозиториев, что обеспечило семейству тщательную проверку производительности моделей.
OpenCoder достигает высокой производительности в различных бенчмарках, что ставит их в ряд SOTA-моделей с открытым исходным кодом для задач программирования.
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "infly/OpenCoder-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False)
result = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
@ai_machinelearning_big_data
#AI #ML #LLM #OpenCoder #Datasets
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
- VideoChat2-Flash, мощный MLLM, построенный на базе видеокодера (UMT) и LLM (Qwen).
Внутри новая высокоэффективная архитектура модели с исключительной скоростью инференса, которая позволяет кодировать каждый видеокадр всего в 16 токенов, что в 5-10 раз быстрее, чем в предыдущей модели OpenGVLab.
Модели представлены в размерах 2B и 7B и разрешении 224 и 448.
- BytedanceTalk выпустил модель SA2VA с параметрами 26B.
Sa2VA - это MLM, способный отвечать на вопросы, понимать изображения и видео выполнять сегментацию. Модель, сопоставима с SOTA моделями в своем классе Qwen2-VL и InternVL2.5 в QA тестах.
- VRC-Bench - это новый бенчмарк для оценки эффективности мультимодальных LLM.
- MiniCPM-o 2.6 - это новая мультимодальная модель с 8B параметрами, работающая на edge девайсах. Лучшая в своем классе возможности двуязычной речи с разговором в реальном времени и клонированием голоса.
💬 LLM
- MiniMax-Text-01 - новая языковая модель, которая стабильно обходит GPT-4o и Gemini-2 на бенчмарках с длинным контекстом, сохраняя высокие оценки (0.910-0.963) при длине контекста до 4M токенов🤯
- Датасет: Sky-T1-data-17k - это разнообразный набор данных, используемый для обучения Sky-T1-32B - ризонинг модели, которую можно обучить всего за 450 долларов!
- Kyutai labs выпустили Helium-1 Preview 2B - многоязычный LLM для edge девайсов и мобильных устройств.
- Wayfarer-12B - новая модель генерации текстовой приключенческой ролевой игры от AI Dungeon🧙🏻
- ReaderLM-v2 - это новая модель синтаксического анализа HTML от JinaAI.
- Вriaforall выпустила Dria-Agent-a-3B, новую модель генерации кода (для Python), основанную на Qwen2.5.
- UnslothAI адаптировали Phi-4 к архитектуре Llama 3.3 сделав, более быструю и экономичную по памяти версию.
👀 Vision
- MatchAnything - это новая универсальная модель для сопоставления изображений.
- FitDit - это высококачественная модель виртуальной примерочной, основанная на архитектуре DiT.
⭐️ Аудио
- OuteTTS-0.3-1B - это новая многоязычная модель преобразования текста в речь с возможностью клонирования голоса и управления эмоциями.
📖 Поиск
- Lightblue выпустила новую модель для поиска связи в тексте, основанную на Qwen2.5. LB-reranker-0.5B-v1.0, которая поддерживает более 95 языков
- cde-small-v2 - это новая SOTA модель эмбедингов текста небольшого размера.
LeetGPU - бесплатная платформа для написания и запуска кода на CUDA.
Вы можете практиковаться и изучать CUDA онлайн, без использования графического процессора!
@ai_machinelearning_big_data
#ml #digest #datasets #opensource #ai #llm #news
Please open Telegram to view this post
VIEW IN TELEGRAM