IT_ONE Cup. Code & Analyst — хакатон для аналитиков и разработчиков, где ты узнаешь, как работает IT-команда, и получишь сильный кейс в портфолио. Выбери трек и реши одну из задач:
→ Проанализируй BPMN-модель кредитного процесса и подготовь ТЗ на систему мониторинга эффективности.
→ Разработай сервис, который в реальном времени следит за переводами и оповещает о подозрительных операциях.
🏆 Призовой фонд: 900 000 рублей
💻 Формат: онлайн
🗓 Регистрация до 16 октября: https://cnrlink.com/itonecupmsupythonl (https://cnrlink.com/itonecupmsupythonl?erid=2W5zFJGEo9a)
Приглашаем системных аналитиков, разработчиков и менеджеров проектов. Размер команды — от 1 до 5 человек.
Что тебя ждёт:
• Применишь навыки системного анализа, построения архитектуры и работы с потоковыми данными.
• Получишь готовый проект в портфолио.
• Для участников ТОП-5 команд в каждом треке — фирменный мерч.
Задачи соревнования:
Трек 1. Навигатор оптимизации. Проанализируй кредитный процесс банка, выяви узкие места и создай ТЗ для системы мониторинга производительности. Решение поможет оптимизировать критически важные процессы.
Трек 2. Финансовый радар. Разработай сервис для анализа транзакций в реальном времени. Архитектура должна включать правила обнаружения мошенничества и поддержку различных алгоритмов обработки.
Ждём тебя на IT_ONE Cup. Code & Analyst — старт 17 октября на Codenrock: https://cnrlink.com/itonecupmsupythonl
@Python_Community_ru
→ Проанализируй BPMN-модель кредитного процесса и подготовь ТЗ на систему мониторинга эффективности.
→ Разработай сервис, который в реальном времени следит за переводами и оповещает о подозрительных операциях.
🏆 Призовой фонд: 900 000 рублей
💻 Формат: онлайн
🗓 Регистрация до 16 октября: https://cnrlink.com/itonecupmsupythonl (https://cnrlink.com/itonecupmsupythonl?erid=2W5zFJGEo9a)
Приглашаем системных аналитиков, разработчиков и менеджеров проектов. Размер команды — от 1 до 5 человек.
Что тебя ждёт:
• Применишь навыки системного анализа, построения архитектуры и работы с потоковыми данными.
• Получишь готовый проект в портфолио.
• Для участников ТОП-5 команд в каждом треке — фирменный мерч.
Задачи соревнования:
Трек 1. Навигатор оптимизации. Проанализируй кредитный процесс банка, выяви узкие места и создай ТЗ для системы мониторинга производительности. Решение поможет оптимизировать критически важные процессы.
Трек 2. Финансовый радар. Разработай сервис для анализа транзакций в реальном времени. Архитектура должна включать правила обнаружения мошенничества и поддержку различных алгоритмов обработки.
Ждём тебя на IT_ONE Cup. Code & Analyst — старт 17 октября на Codenrock: https://cnrlink.com/itonecupmsupythonl
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Python трюк: динамическое добавление методов в класс
Мало кто знает, но в Python можно на лету добавлять методы в уже созданный класс. Это удобно для плагинов, тестов или динамических API.
Пример 👇
class User:
def __init__(self, name):
self.name = name
# Обычный объект
u = User("Alice")
# Функция, которую хотим "подмешать"
def greet(self):
return f"Hello, {self.name}!"
# Вклиниваем метод в класс
User.greet = greet
print(u.greet()) # Hello, Alice!
⚡ Приём называется monkey patching.
Это мощный инструмент — но им надо пользоваться аккуратно, чтобы не сломать читаемость кода.
https://www.youtube.com/shorts/64-dqXJZ8RM
@Python_Community_ru
Мало кто знает, но в Python можно на лету добавлять методы в уже созданный класс. Это удобно для плагинов, тестов или динамических API.
Пример 👇
class User:
def __init__(self, name):
self.name = name
# Обычный объект
u = User("Alice")
# Функция, которую хотим "подмешать"
def greet(self):
return f"Hello, {self.name}!"
# Вклиниваем метод в класс
User.greet = greet
print(u.greet()) # Hello, Alice!
⚡ Приём называется monkey patching.
Это мощный инструмент — но им надо пользоваться аккуратно, чтобы не сломать читаемость кода.
https://www.youtube.com/shorts/64-dqXJZ8RM
@Python_Community_ru
🐍 Простые фишки парсинга в Python
1️⃣ Парсинг больших JSON-файлов без загрузки в память
import ijson
with open("big.json", "r") as f:
for item in ijson.items(f, "records.item"):
print(item) # потоковый парсинг, не держим всё в памяти
2️⃣ HTML-парсинг с поддержкой XPath через lxml
from lxml import html
doc = html.fromstring("Hello")
print(doc.xpath("//span/text()")[0]) # Hello
3️⃣ Парсинг логов с регулярками и именованными группами
import re
line = '2025-08-23 12:10:45 [INFO] User=egor Action=login'
pattern = r'(?P\d{4}-\d{2}-\d{2}) .* User=(?P\w+) Action=(?P\w+)'
m = re.search(pattern, line)
print(m.groupdict())
# {'date': '2025-08-23', 'user': 'egor', 'action': 'login'}
4️⃣ Парсинг YAML c поддержкой типов
import yaml
data = yaml.safe_load("""
user: egor
active: true
age: 30
""")
print(data) # {'user': 'egor', 'active': True, 'age': 30}
5️⃣ Парсинг бинарных данных (struct)
import struct
raw = b"\x01\x00\x00\x00\x2A\x00"
id, value = struct.unpack("
@Python_Community_ru
1️⃣ Парсинг больших JSON-файлов без загрузки в память
import ijson
with open("big.json", "r") as f:
for item in ijson.items(f, "records.item"):
print(item) # потоковый парсинг, не держим всё в памяти
2️⃣ HTML-парсинг с поддержкой XPath через lxml
from lxml import html
doc = html.fromstring("Hello")
print(doc.xpath("//span/text()")[0]) # Hello
3️⃣ Парсинг логов с регулярками и именованными группами
import re
line = '2025-08-23 12:10:45 [INFO] User=egor Action=login'
pattern = r'(?P\d{4}-\d{2}-\d{2}) .* User=(?P\w+) Action=(?P\w+)'
m = re.search(pattern, line)
print(m.groupdict())
# {'date': '2025-08-23', 'user': 'egor', 'action': 'login'}
4️⃣ Парсинг YAML c поддержкой типов
import yaml
data = yaml.safe_load("""
user: egor
active: true
age: 30
""")
print(data) # {'user': 'egor', 'active': True, 'age': 30}
5️⃣ Парсинг бинарных данных (struct)
import struct
raw = b"\x01\x00\x00\x00\x2A\x00"
id, value = struct.unpack("
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Python: склейка TCP-пакетов
Когда отправляешь ты в сокет много маленьких кусочков - уходит куча мелких TCP-пакетов это работает медленнее и с задержками.
Решение: склеивай данные и отправляй одним блоком.
На Linux можно сказать ядру «подожди, я ещё допишу» команда MSG MORE.
Итог: меньше пакетов, быстрее отклик.
python
import socket
def send_coalesced(sock, parts):
for chunk in parts[:-1]:
sock.sendall(chunk, socket.MSG_MORE)
sock.sendall(parts[-1]) финальный flush
#Вот короткий пример как делать «плохо» и «хорошо»:
import socket
sock = socket.create_connection(("localhost", 9090))
# Плохо: много маленьких пакетов
sock.sendall(b"Hello, ")
sock.sendall(b"world")
sock.sendall(b"!\n")
# Хорошо: склеили всё и отправили одним пакетом
msg = b"".join([b"Hello, ", b"world", b"!\n"])
sock.sendall(msg)
@Python_Community_ru
Когда отправляешь ты в сокет много маленьких кусочков - уходит куча мелких TCP-пакетов это работает медленнее и с задержками.
Решение: склеивай данные и отправляй одним блоком.
На Linux можно сказать ядру «подожди, я ещё допишу» команда MSG MORE.
Итог: меньше пакетов, быстрее отклик.
python
import socket
def send_coalesced(sock, parts):
for chunk in parts[:-1]:
sock.sendall(chunk, socket.MSG_MORE)
sock.sendall(parts[-1]) финальный flush
#Вот короткий пример как делать «плохо» и «хорошо»:
import socket
sock = socket.create_connection(("localhost", 9090))
# Плохо: много маленьких пакетов
sock.sendall(b"Hello, ")
sock.sendall(b"world")
sock.sendall(b"!\n")
# Хорошо: склеили всё и отправили одним пакетом
msg = b"".join([b"Hello, ", b"world", b"!\n"])
sock.sendall(msg)
@Python_Community_ru
This media is not supported in your browser
VIEW IN TELEGRAM
🐍 Малоизвестный совет по Python: используй pyparsing вместо громоздких и тяжёлых regex.
Обычно все пишут через модуль re и собирают гигантские регулярки, которые сложно читать и отлаживать. Но есть библиотека pyparsing, где можно строить парсер как из конструктора — из простых правил.
Главная фишка: если в одном месте разбор сломался, pyparsing пробует другие варианты, а не падает. Это делает его удобным инструментом для разбора конфигов, мини-языков и любых сложных форматов текста, где regex становится болью.
from pyparsing import Word, alphas, nums, Group, OneOrMore
# Определим правило: слово + число
identifier = Word(alphas) + Word(nums)
# Парсер будет читать такие пары подряд
parser = OneOrMore(Group(identifier))
result = parser.parseString("user123 order456 item789")
print(result.asList())
# output:
@Python_Community_ru
Обычно все пишут через модуль re и собирают гигантские регулярки, которые сложно читать и отлаживать. Но есть библиотека pyparsing, где можно строить парсер как из конструктора — из простых правил.
Главная фишка: если в одном месте разбор сломался, pyparsing пробует другие варианты, а не падает. Это делает его удобным инструментом для разбора конфигов, мини-языков и любых сложных форматов текста, где regex становится болью.
from pyparsing import Word, alphas, nums, Group, OneOrMore
# Определим правило: слово + число
identifier = Word(alphas) + Word(nums)
# Парсер будет читать такие пары подряд
parser = OneOrMore(Group(identifier))
result = parser.parseString("user123 order456 item789")
print(result.asList())
# output:
@Python_Community_ru
🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🐍 Python трюк: сортировка namedtuple
Вместо словарей можно использовать namedtuple для хранения структурированных данных, а потом легко сортировать по любому полю.
from collections import namedtuple
Name = namedtuple("Name", ["first", "last"])
names = [
Name("Mike", "Driscoll"),
Name("Zahna", "Brown"),
Name("James", "Williams")
]
# Сортировка по имени
print(sorted(names, key=lambda n: n.first))
# Сортировка по фамилии
print(sorted(names, key=lambda n: n.last))
@Python_Community_ru
Вместо словарей можно использовать namedtuple для хранения структурированных данных, а потом легко сортировать по любому полю.
from collections import namedtuple
Name = namedtuple("Name", ["first", "last"])
names = [
Name("Mike", "Driscoll"),
Name("Zahna", "Brown"),
Name("James", "Williams")
]
# Сортировка по имени
print(sorted(names, key=lambda n: n.first))
# Сортировка по фамилии
print(sorted(names, key=lambda n: n.last))
@Python_Community_ru
🚀 Django 6.0 — уже в пути!
✨ Главное в Django 6.0
- Content Security Policy (CSP)
Новый ContentSecurityPolicyMiddleware, теги csp() и настройки SECURE_CSP / SECURE_CSP_REPORT_ONLY.
- Фоновые задачи
Декоратор @task и метод enqueue() для простого запуска background jobs.
- Template Partials
Теги {% partialdef %} и {% partial %} для переиспользуемых фрагментов в шаблонах.
- Обновлённое Email API
Современный EmailMessage вместо устаревших MIME-классов.
- Другие улучшения
• В админке — иконки Font Awesome
• В auth увеличены итерации PBKDF2
• Улучшения в Postgres, GeoDjango, миграциях и др.
🔄 Изменения без обратной совместимости
- Минимальная версия MariaDB — 10.6
- Поддержка Python ≥ 3.12
- DEFAULT_AUTO_FIELD теперь всегда BigAutoField
- Удалены устаревшие API и внутренние методы
👉 Подробнее: https://docs.djangoproject.com/en/dev/releases/6.0/
#django #python
@Python_Community_ru
✨ Главное в Django 6.0
- Content Security Policy (CSP)
Новый ContentSecurityPolicyMiddleware, теги csp() и настройки SECURE_CSP / SECURE_CSP_REPORT_ONLY.
- Фоновые задачи
Декоратор @task и метод enqueue() для простого запуска background jobs.
- Template Partials
Теги {% partialdef %} и {% partial %} для переиспользуемых фрагментов в шаблонах.
- Обновлённое Email API
Современный EmailMessage вместо устаревших MIME-классов.
- Другие улучшения
• В админке — иконки Font Awesome
• В auth увеличены итерации PBKDF2
• Улучшения в Postgres, GeoDjango, миграциях и др.
🔄 Изменения без обратной совместимости
- Минимальная версия MariaDB — 10.6
- Поддержка Python ≥ 3.12
- DEFAULT_AUTO_FIELD теперь всегда BigAutoField
- Удалены устаревшие API и внутренние методы
👉 Подробнее: https://docs.djangoproject.com/en/dev/releases/6.0/
#django #python
@Python_Community_ru
🔥3
🖥 Leviathan (https://github.com/kython28/leviathan) — это сверхбыстрая библиотека для Python, реализующая цикл событий (event loop) для asyncio на базе языка Zig!
🌟 Она обеспечивает высокую производительность, полную совместимость с asyncio и простоту интеграции в проекты. Leviathan нацелен на минимизацию задержек и оптимизацию производительности по сравнению со стандартными циклами событий Python.
🔐 Лицензия: MIT
🖥 Github (https://github.com/kython28/leviathan)
@Python_Community_ru
🌟 Она обеспечивает высокую производительность, полную совместимость с asyncio и простоту интеграции в проекты. Leviathan нацелен на минимизацию задержек и оптимизацию производительности по сравнению со стандартными циклами событий Python.
🔐 Лицензия: MIT
🖥 Github (https://github.com/kython28/leviathan)
@Python_Community_ru
🎨 Улучшение изображений с помощью SRPO
SRPO — это метод, который оптимизирует процесс восстановления изображений с высокой степенью шума, используя новую стратегию выборки и прямую обратную связь. Он обеспечивает более быструю и стабильную тренировку моделей, минимизируя вычислительные затраты и избегая проблем с переобучением.
🚀Основные моменты:
- Эффективное восстановление изображений с высокой степенью шума.
- Ускоренная тренировка за счет оптимизации с аналитическими градиентами.
- Отсутствие проблем с "взломом" вознаграждений.
- Динамическое управление текстовыми условиями для настройки предпочтений.
📌 GitHub: https://github.com/Tencent-Hunyuan/SRPO
@Python_Community_ru
SRPO — это метод, который оптимизирует процесс восстановления изображений с высокой степенью шума, используя новую стратегию выборки и прямую обратную связь. Он обеспечивает более быструю и стабильную тренировку моделей, минимизируя вычислительные затраты и избегая проблем с переобучением.
🚀Основные моменты:
- Эффективное восстановление изображений с высокой степенью шума.
- Ускоренная тренировка за счет оптимизации с аналитическими градиентами.
- Отсутствие проблем с "взломом" вознаграждений.
- Динамическое управление текстовыми условиями для настройки предпочтений.
📌 GitHub: https://github.com/Tencent-Hunyuan/SRPO
@Python_Community_ru
👍1
📚✨ Lue - Умный терминальный ридер с TTS
Lue — это терминальный ридер электронных книг, поддерживающий множество форматов, включая EPUB и PDF. Он предлагает текст в речь с возможностью настройки скорости воспроизведения и синхронизации с выделением слов, что улучшает восприятие текста.
🚀Основные моменты:
- Поддержка форматов: EPUB, PDF, TXT и др.
- Модульная система TTS с Edge и Kokoro.
- Кроссплатформенность: macOS, Linux, Windows.
- Настройка скорости воспроизведения от 1x до 3x.
- Удобный интерфейс с поддержкой мыши и клавиатуры.
📌 GitHub: https://github.com/superstarryeyes/lue
@Python_Community_ru
Lue — это терминальный ридер электронных книг, поддерживающий множество форматов, включая EPUB и PDF. Он предлагает текст в речь с возможностью настройки скорости воспроизведения и синхронизации с выделением слов, что улучшает восприятие текста.
🚀Основные моменты:
- Поддержка форматов: EPUB, PDF, TXT и др.
- Модульная система TTS с Edge и Kokoro.
- Кроссплатформенность: macOS, Linux, Windows.
- Настройка скорости воспроизведения от 1x до 3x.
- Удобный интерфейс с поддержкой мыши и клавиатуры.
📌 GitHub: https://github.com/superstarryeyes/lue
@Python_Community_ru