❌ Монолитные тесты = больше головной боли при отладке.
Когда в одном тесте проверяешь всё подряд, при падении непонятно, какой именно сценарий сломался.
✅ Пишем специфичные тесты.
Каждая функция тестирует один конкретный случай. Так при падении сразу видно, где ошибка.
Плохо:
def test_extract_sentiment():
assert extract_sentiment("I love this!") == "positive"
assert extract_sentiment("Terrible") == "negative"
assert extract_sentiment("On time") == "neutral"
Хорошо:
def test_extract_sentiment_positive():
assert extract_sentiment("I love this!") == "positive"
def test_extract_sentiment_negative():
assert extract_sentiment("Terrible") == "negative"
📌 Результат — быстрее находишь баги и не тратишь время на догадки.
@Python_Community_ru
Когда в одном тесте проверяешь всё подряд, при падении непонятно, какой именно сценарий сломался.
✅ Пишем специфичные тесты.
Каждая функция тестирует один конкретный случай. Так при падении сразу видно, где ошибка.
Плохо:
def test_extract_sentiment():
assert extract_sentiment("I love this!") == "positive"
assert extract_sentiment("Terrible") == "negative"
assert extract_sentiment("On time") == "neutral"
Хорошо:
def test_extract_sentiment_positive():
assert extract_sentiment("I love this!") == "positive"
def test_extract_sentiment_negative():
assert extract_sentiment("Terrible") == "negative"
📌 Результат — быстрее находишь баги и не тратишь время на догадки.
@Python_Community_ru
🚀 FastMCP 2.0 — новый стандарт для интеграции LLM в Python-приложения. Этот фреймворк для работы с упрощает подключение языковых моделей к внешним ресурсам. Инструмент предлагает стандартизированный способ предоставления данных, инструментов и шаблонов запросов для ИИ-приложений.
Проект имеет минималистичный синтаксис: достаточно декоратора @mcp.tool, чтобы превратить обычную Python-функцию в инструмент, доступный для LLM. Проект развивается как альтернатива официальному MCP SDK и уже включает клиентские библиотеки, систему аутентификации и инструменты для тестирования. При этом система автоматически генерирует схему на основе type hints и docstrings.
🤖 GitHub (https://github.com/jlowin/fastmcp)
@Python_Community_ru
Проект имеет минималистичный синтаксис: достаточно декоратора @mcp.tool, чтобы превратить обычную Python-функцию в инструмент, доступный для LLM. Проект развивается как альтернатива официальному MCP SDK и уже включает клиентские библиотеки, систему аутентификации и инструменты для тестирования. При этом система автоматически генерирует схему на основе type hints и docstrings.
🤖 GitHub (https://github.com/jlowin/fastmcp)
@Python_Community_ru
🔥2
⚡️ DeepCode — открытая AI-платформу для автоматической генерации кода.
DeepCode превращает научные статьи и технические документы в готовые проекты, включая фронтенд, бэкенд и полноценные репозитории.
🔹 Основные возможности:
• Paper2Code — реализация идей из исследований в рабочий код
• Text2Web — генерация интерфейсов по описанию
• Text2Backend — автоматическое создание масштабируемых серверов
• Поддержка длинных документов и многофайловых проектов
🔜 В ближайшее время разработчики обещают:
• Автоматическую проверку и валидацию кода
• Повышение скорости генерации
• Улучшенную работу с требованиями
• Бенчмарки воспроизведения научных статей (PaperBench)
Проект полностью open source: https://github.com/HKUDS/DeepCode
#deepcode #AI #coding
@Python_Community_ru
DeepCode превращает научные статьи и технические документы в готовые проекты, включая фронтенд, бэкенд и полноценные репозитории.
🔹 Основные возможности:
• Paper2Code — реализация идей из исследований в рабочий код
• Text2Web — генерация интерфейсов по описанию
• Text2Backend — автоматическое создание масштабируемых серверов
• Поддержка длинных документов и многофайловых проектов
🔜 В ближайшее время разработчики обещают:
• Автоматическую проверку и валидацию кода
• Повышение скорости генерации
• Улучшенную работу с требованиями
• Бенчмарки воспроизведения научных статей (PaperBench)
Проект полностью open source: https://github.com/HKUDS/DeepCode
#deepcode #AI #coding
@Python_Community_ru
👍3