Python Community
12.6K subscribers
1.29K photos
54 videos
15 files
791 links
Python Community RU - СНГ сообщество Python-разработчиков

Чат канала: @python_community_chat

Сотрудничество: @cyberJohnny и @Sergey_bzd

РКН реестр:
https://knd.gov.ru/license?id=67847dd98e552d6b54a511ed&registryType=bloggersPermission
Download Telegram
🖥 PyRoki — модульный инструмент для оптимизации кинематики роботов

На GitHub и в preprint на arXiv появилась новая работа от исследователей из Berkeley — PyRoki (Python Robot Kinematics Toolkit). Это мощный, гибкий и кроссплатформенный инструмент на Python для задач оптимизации в робототехнике.

🔧 Что такое PyRoki?

PyRoki — это:

- 📦 Модульная архитектура
Разделение переменных оптимизации и функций стоимости (costs) позволяет комбинировать задачи IK, планирования траектории, ретаргетинга и многое другое — без повторения кода.

- ⚙️ Дифференцируемая кинематика
Поддержка URDF-моделей, автоматическое создание collision-примитивов (например, капсул), работа с NumPy и JAX.

- 🚀 Поддержка CPU, GPU и TPU
Высокая производительность и масштабируемость на любых вычислительных устройствах.

- 🧠 Оптимизация на многообразиях (Lie-группы)
Встроенный алгоритм Levenberg–Marquardt даёт устойчивую и быструю сходимость даже для сложных конфигураций.

📊 Результаты

- Быстрее cuRobo на 1.4–1.7x при решении задач IK в батче.
- Более точные результаты при меньших вычислительных затратах.
- Интерактивный визуализатор (на базе `viser`) для отладки и анализа.

📁 Примеры использования

PyRoki включает в себя готовые сценарии:
- инверсная кинематика (IK)
- бимануальные манипуляции
- мобильные платформы
- ретаргетинг движений гуманоидов
- учёт столкновений
- online-планирование и управление

🚀 Установка


git clone https://github.com/chungmin99/pyroki.git
cd pyroki
pip install -e .


Требуется Python 3.12+ (частичная поддержка Python 3.10–3.11).

PyRoki — это:

- 📐 Удобный фреймворк для исследований в области робототехники.
- 🛠️ Подходит как для академических, так и для прикладных задач.
- 🌐 Гибкий и масштабируемый — от одного робота до больших motion-баз.

Если интересен пример интеграции с ROS, Gazebo или симуляцией цифрового двойника — дай знать, покажу!

🔗 Репозиторий (https://github.com/chungmin99/pyroki)

#Python #Robotics #Kinematics #InverseKinematics #MotionPlanning #OpenSource



@Python_Community_ru
👍1
🖥 Топ Python-библиотек для работы с PDF

Работаешь с PDF в Python? Вот подборка лучших библиотек, которые помогут извлекать текст, редактировать, создавать и анализировать PDF-документы. Каждая из них имеет свои сильные стороны 👇

📌 PyPDF2 — для чтения, разделения, объединения, поворота и модификации PDF
🔗 https://github.com/py-pdf/pypdf

PDFMiner — извлекает текст, структуру и метаинформацию из PDF (в том числе со шрифтами и координатами)
🔗 https://github.com/pdfminer/pdfminer.six

📊 ReportLab — создание PDF-файлов с графиками, таблицами, стилями и вёрсткой
🔗 https://www.reportlab.com/opensource/

🌐 PyPDFium2 — быстрый рендеринг и извлечение изображений с помощью движка PDFium
🔗 https://pypi.org/project/pypdfium2/

🛠 pdfplumber — удобное извлечение текста, таблиц и координат объектов
🔗 https://github.com/jsvine/pdfplumber

📄 PyMuPDF (fitz) — быстрая и мощная библиотека для анализа, рендеринга и аннотирования PDF
🔗 https://github.com/pymupdf/PyMuPDF

🔜 Примеры по работе с библиотеками (https://uproger.com/luchshie-python-bibliotek-dlya-raboty-s-pdf/)

Используй их вместе или по отдельности — в зависимости от того, нужно ли тебе распарсить текст, извлечь таблицу, отрендерить страницу или сгенерировать отчёт.



#Python #PDF #PyPDF2 #PDFMiner #ReportLab #pdfplumber #PyMuPDF #PyPDFium2 #DevTools #PythonDev #OpenSource

@Python_Community_ru
🔥6
🖥 py-pglite — PostgreSQL без установки, тестируй как с SQLite!

py-pglite — обёртка PGlite для Python, позволяющая запускать настоящую базу PostgreSQL прямо при тестах. Без Docker, без настройки — просто импортируй и работай.

📌 Почему это круто:
- 🧪 Ноль конфигурации: никакого Postgres и Docker, только Python
- Молниеносный старт: 2–3 с против 30–60 с на традиционные подходы :contentReference[oaicite:2]{index=2}
- 🔐 Изолированные базы: новая база для каждого теста — чисто и безопасно
- 🏗️ Реальный Postgres: работает с JSONB, массивами, оконными функциями
- 🔌 Совместимость: SQLAlchemy, Django, psycopg, asyncpg — любая связка :contentReference[oaicite:3]{index=3}

💡 Примеры установки:

pip install py-pglite
pip install py-pglite[sqlalchemy] # SQLAlchemy/SQLModel
pip install py-pglite[django] # Django + pytest-django
pip install py-pglite[asyncpg] # Асинхронный клиент
pip install py-pglite[all] # Всё сразу


🔧 Пример (SQLAlchemy)

python
def test_sqlalchemy_just_works(pglite_session):
user = User(name="Alice")
pglite_session.add(user)
pglite_session.commit()
assert user.id is not None


py‑pglite — идеальный инструмент для unit- и интеграционных тестов, где нужен настоящий Postgres, но без всей админской рутины.

Полноценный PostgreSQL — без его тяжеловесности.

Github (https://github.com/wey-gu/py-pglite)



#python #sql #PostgreSQL #opensource

@Python_Community_ru
🖥 Transfunctions — библиотека транзакционных функций на Python

Transfunctions — это инструмент для создания чистых, переиспользуемых и управляемых пайплайнов из функций. Подходит для задач, где нужно чётко контролировать каждый шаг выполнения.

Что такое транзакционные функции?

Это функции, которые:
• имеют чёткое начало и откат (rollback) — как в базах данных
• могут быть объединены в цепочки, где каждая часть знает, как отменить свои действия
• обрабатывают ошибки и контекст централизованно
• позволяют писать бизнес-логику без дублирования и хаоса

Что умеет Transfunctions:
• Объединение функций в контролируемые пайплайны
• Поддержка отката и логирования
• Контекстное выполнение (например, сессии, транзакции, данные)
• Минимум шаблонного кода

Подходит для ETL, финансовых операций, инфраструктурных обработчиков и сценариев с проверками и откатами.

pip install transfunctions

🔗 GitHub: https://github.com/pomponchik/transfunctions

#python #pipeline #transactions #opensource #architecture



@Python_Community_ru
📌Python на взлете, а Python Software Foundation в минусе на 1.5 млн. долларов: разбираем свежий опрос.

Python Software Foundation (PSF) совместно с JetBrains опубликовала (https://lp.jetbrains.com/python-developers-survey-2024/) результаты восьмого, самого крупного в истории опроса разработчиков - в нём приняли участие более 30 000 человек.

Данные, собранные в конце 2024 года, показывают, что 72% респондентов используют Python в рабочих целях и это подтверждает доминирующую роль языка в индустрии. И популярность Python продолжает расти: согласно другому исследованию, от Stack Overflow, использование языка увеличилось на 7%.

🟡Приток свежей крови в экосистему.

Половина опрошенных имеют менее 2 лет профессионального опыта в программировании, а 39% начали использовать Python в течение последних 2 лет. Это говорит о том, что язык активно привлекает новичков и остается ключевой точкой входа в разработку.

🟡Парадокс версий.

Только 15% разработчиков используют последнюю на момент опроса версию, 3.13. В PSF утверждают, что массовый переход на нее мог бы сэкономить миллионы долларов на облачных вычислениях за счет повышения эффективности.

Однако сами разработчики не торопятся: 53% заявляют, что текущая версия полностью удовлетворяет их потребности, 27% ссылаются на проблемы с совместимостью, а 25% - на нехватку времени.

При этом нельзя сказать, что сообщество инертно. Самая популярная версия - 3.12 (35%), выпущенная в конце 2023 года, за ней следует 3.11 (21%), что говорит о довольно быстрой адаптации к не самым последним, но свежим релизам.

🟡Сферы применения.

Анализ данных (48%) и веб-разработка (46%) идут практически вровень. Но если к анализу прибавить ML (41%) и инжиниринг данных (31%), то доминирование Data Science становится очевидным.

В мире веб-фреймворков происходит смена караула: FastAPI (38%) резко вырвался вперед, обогнав ветеранов: Django (35%) и Flask (34%). Год назад у FastAPI было всего 29%.

Ещё один стремительный взлёт — у написанного на Rust менеджера пакетов uv, который позиционируется как замена pip. Заявляя о кратном превосходстве в скорости, он уже отхватил 11% пользователей.

А вот в лагере IDE плохие новости для спонсора опроса, JetBrains: Visual Studio Code укрепил свое лидерство, набрав 48% (против 41% в прошлом году), а доля PyCharm снизилась до 25% (с 31%).

🟡Финансовые проблемы Python Software Foundation.

Ранее в этом месяце PSF объявила о приостановке своей грантовой программы из-за нехватки средств.

Годовой отчет за 2024 год показал чистый убыток в размере 1 462 000 долларов, что значительно больше, чем в 2023 году, там убыток был 225 000 долларов.

Фонд, который поддерживает репозиторий PyPI, дистрибуцию самого Python и нанимает разработчиков для CPython, оказался в сложной ситуации и явно нуждается в большей поддержке и ресурсах от корпораций, которые строят свой бизнес и получают доход на Python.




#news #ai #ml #python

@Python_Community_ru
🐍 Изучаем MCP на Python — серия уроков от Microsoft

Пошаговое руководство для Python-разработчиков по Model Context Protocol (MCP):
как понять концепцию и построить свой MCP-сервер в интерактивном формате.

📚 Репозиторий с гайдом (https://github.com/microsoft/lets-learn-mcp-python)

#python #MCP #tutorial #developers

@Python_Community_ru
🔍 Django ModelSearch: Умный поиск для ваших моделей

Django ModelSearch позволяет индексировать модели Django и осуществлять поиск с помощью ORM. Поддерживает PostgreSQL FTS, SQLite FTS5, Elasticsearch и OpenSearch. Идеально подходит для создания мощных поисковых решений в ваших приложениях.

🚀Основные моменты:
- Индексация моделей в Elasticsearch и OpenSearch
- Поддержка автозаполнения и фасетного поиска
- Возможность использования существующих QuerySets
- Поддержка нечеткого поиска и структурированных запросов
- Нулевая простоя при перестройке индекса

📌 GitHub: https://github.com/kaedroho/django-modelsearch



#python

@Python_Community_ru
🚀 Улучшаем взаимодействие с Claude Code

cc-sessions — это инструмент, который оптимизирует работу с Claude Code, устраняя его основные недостатки. Он обеспечивает контроль над процессом программирования, заставляя Claude сначала обсуждать изменения, прежде чем вносить их в код.

🚀Основные моменты:
- Обеспечивает управление состоянием и памятью о задачах.
- Устраняет случайные изменения в коде.
- Сохраняет контекст между сессиями.
- Принуждает к обсуждению перед реализацией изменений.

📌 GitHub:

#python

@Python_Community_ru

https://github.com/GWUDCAP/cc-sessions
This media is not supported in your browser
VIEW IN TELEGRAM
🎬 HomeTube - Удобный загрузчик видео для вашего HomeLab

HomeTube предлагает простой веб-интерфейс для загрузки видео с различных платформ, включая YouTube, с автоматической организацией файлов для медиа-серверов, таких как Plex и Jellyfin. Идеальное решение для интеграции любимых видео в локальный медиаплеер.

🚀Основные моменты:
- 🎯 Загрузка видео в высоком качестве с автоматической организацией
- 📱 Доступ через веб-интерфейс с любого устройства в сети
- 🚫 Поддержка блокировки рекламы и спонсоров
- 🍪 Возможность разблокировки ограниченного контента с помощью cookies
- ⚙️ Поддержка более 1800 платформ

📌 GitHub: https://github.com/EgalitarianMonkey/hometube



#python

@Python_Community_ru
🎥 Редактирование видео с Lucy Edit

Lucy Edit — это модель для редактирования видео, позволяющая выполнять изменения по текстовым инструкциям. Она поддерживает разнообразные редактирования, включая смену одежды, замену персонажей и изменение сцен, сохраняя при этом движение и композицию.

🚀 Основные моменты:
- 🏃‍♂️ Сохранение движения и композиции видео
- 🎯 Надежные и точные редактирования
- 🧢 Изменение одежды и аксессуаров
- 🧌 Замена персонажей на животных или известных личностей
- 🗺️ Замена сцен по текстовым описаниям

📌 GitHub:

#python

@Python_Community_ru

https://github.com/DecartAI/Lucy-Edit-ComfyUI