Python Community
12.8K subscribers
1.27K photos
40 videos
15 files
757 links
Python Community RU - СНГ сообщество Python-разработчиков

Чат канала: @python_community_chat

Сотрудничество: @cyberJohnny и @Sergey_bzd

РКН реестр:
https://knd.gov.ru/license?id=67847dd98e552d6b54a511ed&registryType=bloggersPermission
Download Telegram
🌟 Model2Vec: разработка компактных и быстрых моделей на основе Sentence Transformer.

Model2Vec - это библиотека, позволяющая создавать компактные и быстрые модели на основе предобученных моделей Sentence Transformer.

С помощью Model2Vec можно создавать эмбединг-модели для слов и предложений, которые значительно меньше по размеру, но при этом сопоставимы по производительности с исходными моделями Sentence Transformer.

Вот некоторые ключевые особенности:

🟢 Быстрая дистилляция, процесс создания модели занимает всего несколько минут.

🟢 Быстрый инференс, который в 500 раз быстрее на CPU по сравнению с оригинальной моделью.

🟢 Возможность использования любой модели Sentence Transformer с любым словарем (BYOM и BYOV).

🟢 Мультиязычность, требуется лишь мультиязычная модель в качестве источника.

🟢 Интеграция с Huggingface, поддержка загрузки и выгрузки моделей с использованием привычных методов from_pretrained и push_to_hub.

Пайплайн Model2Vec состоит из трех этапов. На первом этапе словарь проходит через модель Sentence Transformer для получения векторов эмбеддингов для каждого слова.

Затем размерность полученных эмбеддингов уменьшается с помощью метода главных компонент (PCA). В завершение применяется zipf-взвешивание для учета частоты слов в словаре.

Model2Vec работает в двух режимах:

🟠 Output, где модель функционирует как Sentence Transformer с использованием subword токенизации.

🟠 Vocab, где создается набор статических эмбеддингов слов, аналогично GloVe или Word2Vec.

Оценка производительности Model2Vec проводилась на наборе данных MTEB по задачам PEARL (оценка качества представления фраз) и WordSim (оценка семантической близости слов).

Результаты показывают, что Model2Vec превосходит GloVe и модели на основе WordLlama по всем задачам оценки.

▶️ Пример дистилляции:

from model2vec.distill import distill

# Выбор модели Sentence Transformer
model_name = "BAAI/bge-base-en-v1.5"

# Дистилляция модели
m2v_model = distill(model_name=model_name, pca_dims=256)

# Сохранение модели
m2v_model.save_pretrained("m2v_model")

▶️ Пример инференса:

from model2vec import StaticModel

# Загрузка модели из HuggingFace hub или локальной.
model_name = "minishlab/M2V_base_output"
# Можно передать токен, если загружаете приватную модель
model = StaticModel.from_pretrained(model_name, token=None)

# Создание эмбеддингов
embeddings = model.encode(["It's dangerous to go alone!", "It's a secret to everybody."])

📌 Лицензирование: MIT License.

Набор моделей (https://huggingface.co/minishlab)
GitHub (https://github.com/MinishLab/model2vec)

(https://t.me/pythonl)

#AI #ML #LLM #Embedding #Model2Vec #python
@Python_Community_ru
Data Fusion 2025 — главное событие весны для специалистов в области работы с данными, которое в пятый раз соберет более 250 экспертов.

Вас ожидает:
• Два дня практических кейсов, 14 треков и более 70 сессий, посвященных передовым исследованиям в области больших данных и технологий искусственного интеллекта
• Кейс-стадии о применении машинного обучения в различных сферах бизнеса — от финтеха и промышленности до медицины
• Экспертиза от ученых, бизнес-лидеров и представителей государства.

📅 16-17 апреля
📍 Москва, технологический кластер «Ломоносов»

Не упустите возможность узнать о главных трендах в искусственном интеллекте и задать вопросы лидерам отрасли.

Участие бесплатное. Регистрация уже открыта.

#AI #ML #BigData #DataFusion #DataScience #IT

*IT — информационные технологии
*AI — искусственный интеллект
*DS — наука о методах анализа данных
*Нетворкинг — полезные связи
*Воркшоп — практическое обучение
@Python_Community_ru
🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Новый фреймворк Function (fxn) компилирует Python-функции в нативный код с производительностью, сравнимой с Rust.

🧠 Как это работает?
- Используется символическое трассирование на CPython для анализа функций.
- Генерируется промежуточное представление (IR).
- IR транслируется в C++ или Rust, а затем компилируется в бинарный код.
- Поддерживаются платформы: Linux, Android, WebAssembly и другие.

📦 Пример:
@compile
def fma(x: float, y: float, z: float) -> float:
return x * y + z
После компиляции вы получаете нативный бинарный файл, который можно запускать без интерпретатора Python.

🔗 Подробнее (https://blog.fxn.ai/python-at-the-speed-of-rust/)
🔗 Github (https://github.com/olokobayusuf/)

#Python #Rust #fxn #Compiler #Performance #AI #ML #Wasm

@Python_Community_ru
⚡️ GGUF-версии GPT-OSS от Unsloth.

Unsloth конвертировали обе GPT-OSS (20B (https://huggingface.co/unsloth/gpt-oss-20b-GGUF) и 120B (https://huggingface.co/unsloth/gpt-oss-120b-GGUF)) и исправили ошибки, чтобы повысить качество инференса.

🟡Оптимальный сетап:

🟢20B работает со скоростью более 10 токенов/с при полной точности на 14 ГБ оперативной памяти.

🟢120B с полной точностью будет давать >40 токенов/с на примерно 64 ГБ ОЗУ.

Минимальных требований для запуска моделей нет, запуститься можно даже если у вас всего 6 ГБ и только CPU, но инференс будет медленнее.

GPU не требуется , особенно для модели 20B, но его наличие значительно увеличивает скорость вывода (~80 токенов/с). С чем-то вроде H100 можно получить пропускную способность 140 токенов/с, и это значительно быстрее, чем у OpenAI в ChatGPT.

Модели можно запустить через llama.cpp, LM Studio или Open WebUI. Если модель 120B слишком медленная, попробуйте версию 20B - она очень быстрая и работает не хуже o3-mini.

Помимо моделей формата GGUF c полной точностью, Unsloth сделали (https://huggingface.co/collections/unsloth/gpt-oss-6892433695ce0dee42f31681) версии с 4-bit и 16-bit точностью. 4-бинтый квант, кстати, можно файнтюнить на 24 ГБ VRAM.

📌 Подробная пошаговая инструкция по локальному запуску и файнтюну - в документации (https://docs.unsloth.ai/basics/gpt-oss-how-to-run-and-fine-tune) Unsloth.


🟡Набор моделей (https://huggingface.co/collections/unsloth/gpt-oss-6892433695ce0dee42f31681)
🟡Документация (https://docs.unsloth.ai/basics/gpt-oss-how-to-run-and-fine-tune)


@ai_machinelearning_big_data

#AI #ML #GPTOSS #GGUF #Unsloth

@Python_Community_ru
📌Python на взлете, а Python Software Foundation в минусе на 1.5 млн. долларов: разбираем свежий опрос.

Python Software Foundation (PSF) совместно с JetBrains опубликовала (https://lp.jetbrains.com/python-developers-survey-2024/) результаты восьмого, самого крупного в истории опроса разработчиков - в нём приняли участие более 30 000 человек.

Данные, собранные в конце 2024 года, показывают, что 72% респондентов используют Python в рабочих целях и это подтверждает доминирующую роль языка в индустрии. И популярность Python продолжает расти: согласно другому исследованию, от Stack Overflow, использование языка увеличилось на 7%.

🟡Приток свежей крови в экосистему.

Половина опрошенных имеют менее 2 лет профессионального опыта в программировании, а 39% начали использовать Python в течение последних 2 лет. Это говорит о том, что язык активно привлекает новичков и остается ключевой точкой входа в разработку.

🟡Парадокс версий.

Только 15% разработчиков используют последнюю на момент опроса версию, 3.13. В PSF утверждают, что массовый переход на нее мог бы сэкономить миллионы долларов на облачных вычислениях за счет повышения эффективности.

Однако сами разработчики не торопятся: 53% заявляют, что текущая версия полностью удовлетворяет их потребности, 27% ссылаются на проблемы с совместимостью, а 25% - на нехватку времени.

При этом нельзя сказать, что сообщество инертно. Самая популярная версия - 3.12 (35%), выпущенная в конце 2023 года, за ней следует 3.11 (21%), что говорит о довольно быстрой адаптации к не самым последним, но свежим релизам.

🟡Сферы применения.

Анализ данных (48%) и веб-разработка (46%) идут практически вровень. Но если к анализу прибавить ML (41%) и инжиниринг данных (31%), то доминирование Data Science становится очевидным.

В мире веб-фреймворков происходит смена караула: FastAPI (38%) резко вырвался вперед, обогнав ветеранов: Django (35%) и Flask (34%). Год назад у FastAPI было всего 29%.

Ещё один стремительный взлёт — у написанного на Rust менеджера пакетов uv, который позиционируется как замена pip. Заявляя о кратном превосходстве в скорости, он уже отхватил 11% пользователей.

А вот в лагере IDE плохие новости для спонсора опроса, JetBrains: Visual Studio Code укрепил свое лидерство, набрав 48% (против 41% в прошлом году), а доля PyCharm снизилась до 25% (с 31%).

🟡Финансовые проблемы Python Software Foundation.

Ранее в этом месяце PSF объявила о приостановке своей грантовой программы из-за нехватки средств.

Годовой отчет за 2024 год показал чистый убыток в размере 1 462 000 долларов, что значительно больше, чем в 2023 году, там убыток был 225 000 долларов.

Фонд, который поддерживает репозиторий PyPI, дистрибуцию самого Python и нанимает разработчиков для CPython, оказался в сложной ситуации и явно нуждается в большей поддержке и ресурсах от корпораций, которые строят свой бизнес и получают доход на Python.




#news #ai #ml #python

@Python_Community_ru