Выше квартилей
2.73K subscribers
110 photos
1 video
1 file
302 links
HSE: Home of Scientometrics and Expertise

Обучение и консультирование по практическим вопросам research evaluation и управлении наукой.

Все вопросы и предложения направляйте @vyshekbot или на почту Наукометрического центра ВШЭ: scientometrics@hse.ru
Download Telegram
Так ли хороши инструменты по рекомендациям цитирований?

Резюмируем заметку, посвященную обзору последних научных работ по теме автоматических рекомендаций.

Для облегчения учета и сбора цитирований были разработаны такие инструменты, как Mendeley, Zotero и EndNote. Вслед за этим появились инструменты составления карт литературы, помогающие в поиске литературы, такие как LitMaps, Citation Gecko, Inciteful и Connected Papers. Эти инструменты работают на основе алгоритмов совместного цитирования и библиографической связи. Совсем недавно были разработаны инструменты по рекомендациям цитирования, такие как Citeomatic и Specter. Эти инструменты призваны помочь авторам цитировать литературу на этапе написания своего исследовательского проекта. Принцип работы таких сервисов строится на том, что они находят подходящую литературу на основе ввода фрагмента текста, а затем подбирают соответствующие цитаты.

При этом чаще всего, используя программу, которая автоматически выбирает литературу для поддержки тезисов исследования, авторы не читают и даже не просматривают документы, которые они находят. И ни редакция, ни рецензенты обычно не проверяют публикации на точность и достоверность цитирований, полагаясь полностью на добросовестность автора.

Таким образом, среди основных минусов использования таких программ:

1. Ленивое цитирование: если для поиска релевантной литературы используется фрагмент текста, то алгоритм будет стремиться найти лишь ту литературу, которая подтверждает авторские слова.
2. Предвзятость утверждения: алгоритмы подтверждают тезисы авторов, игнорируют противоречивую литературу и фокусируются на аналогичных исследованиях в определенной области или сообществе. То есть заведомо усиливают существующие предубеждения относительно темы исследования.
3. Новый эффект Матфея: алгоритмы этих инструментов основаны на текущей и прошлой практике цитирования и выдают наиболее «популярные» результаты, а не наиболее релевантные или точные.
4. Отсутствие прозрачности: существует риск того, что хорошо обеспеченные ресурсами издатели, журналы и частные лица используют алгоритм, чтобы привлечь внимание к своим собственным статьям.

Несмотря на привлекательность и удобство инструментов рекомендаций по цитированию, авторам следует проявлять осторожность при их использовании. Поиск литературы перед разработкой научного проекта является частью исследовательского процесса, а попытка найти цитаты для поддержки утверждений и выводов уже готового исследовательского проекта говорит о небрежности и, в отдельных случаях, о недобросовестности исследователя. Такая практика перекладывает бремя проверки достоверности литературного обзора на читателя.

#цитирование #инструменты #статьи #обзор