Code With Python
39K subscribers
841 photos
24 videos
22 files
746 links
This channel delivers clear, practical content for developers, covering Python, Django, Data Structures, Algorithms, and DSA – perfect for learning, coding, and mastering key programming skills.
Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
Andrew Ng just released two new AI Python courses for beginners!

The course teaches how to write code using AI.

If you're thinking about learning to code, now is the perfect time to do so.

https://deeplearning.ai/short-courses/ai-python-for-beginners/

http://t.me/codeprogrammer πŸ”’

πŸ’‘ #deeplearning #AI #ML #python
Please open Telegram to view this post
VIEW IN TELEGRAM
Data Science Cheat Sheets
Quick help to make a data scientist's life easier

About Dataset
A collection of cheat sheets for various data-science related languages and topics


http://t.me/codeprogrammer πŸ”’

πŸ’‘ #deeplearning #AI #ML #python
Please open Telegram to view this post
VIEW IN TELEGRAM
@CodeProgrammer Data Science Cheat Sheets.zip
596.3 MB
Data Science Cheat Sheets
Quick help to make a data scientist's life easier βœ…

http://t.me/codeprogrammer πŸ”’

πŸ’‘ #deeplearning #AI #ML #python
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘2
⚠️ O'Reilly Media, one of the most reputable publishers in the fields of programming, data mining, and AI, has made 10 data science books available to those interested in this field for free .

βœ”οΈ To use the online and PDF versions of these books, you can use the following links:πŸ‘‡

0⃣ Python Data Science Handbook
β”Œ Online
β””
PDF

1⃣ Python for Data Analysis book
β”Œ Online
β””
PDF

πŸ”’ Fundamentals of Data Visualization book
β”Œ Online
β””
PDF

πŸ”’ R for Data Science book
β”Œ Online
β””
PDF

πŸ”’ Deep Learning for Coders book
β”Œ Online
β””
PDF

πŸ”’ DS at the Command Line book
β”Œ Online
β””
PDF

πŸ”’ Hands-On Data Visualization Book
β”Œ Online
β””
PDF

πŸ”’ Think Stats book
β”Œ Online
β””
PDF

πŸ”’ Think Bayes book
β”Œ Online
β””
PDF

πŸ”’ Kafka, The Definitive Guide
β”Œ Online
β””
PDF

#DataScience #Python #DataAnalysis #DataVisualization #RProgramming #DeepLearning #CommandLine #HandsOnLearning #Statistics #Bayesian #Kafka #MachineLearning #AI #Programming #FreeBooks

https://t.me/CodeProgrammer βœ…
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘15❀3
Free Certification Courses to Learn Data Analytics in 2025:

1. Python
πŸ”— https://imp.i384100.net/5gmXXo

2. SQL
πŸ”— https://edx.org/learn/relational-databases/stanford-university-databases-relational-databases-and-sql

3. Statistics and R
πŸ”— https://edx.org/learn/r-programming/harvard-university-statistics-and-r

4. Data Science: R Basics
πŸ”—https://edx.org/learn/r-programming/harvard-university-data-science-r-basics

5. Excel and PowerBI
πŸ”— https://learn.microsoft.com/en-gb/training/paths/modern-analytics/

6. Data Science: Visualization
πŸ”—https://edx.org/learn/data-visualization/harvard-university-data-science-visualization

7. Data Science: Machine Learning
πŸ”—https://edx.org/learn/machine-learning/harvard-university-data-science-machine-learning

8. R
πŸ”—https://imp.i384100.net/rQqomy

9. Tableau
πŸ”—https://imp.i384100.net/MmW9b3

10. PowerBI
πŸ”— https://lnkd.in/dpmnthEA

11. Data Science: Productivity Tools
πŸ”— https://lnkd.in/dGhPYg6N

12. Data Science: Probability
πŸ”—https://mygreatlearning.com/academy/learn-for-free/courses/probability-for-data-science

13. Mathematics
πŸ”—http://matlabacademy.mathworks.com

14. Statistics
πŸ”— https://lnkd.in/df6qksMB

15. Data Visualization
πŸ”—https://imp.i384100.net/k0X6vx

16. Machine Learning
πŸ”— https://imp.i384100.net/nLbkN9

17. Deep Learning
πŸ”— https://imp.i384100.net/R5aPOR

18. Data Science: Linear Regression
πŸ”—https://pll.harvard.edu/course/data-science-linear-regression/2023-10

19. Data Science: Wrangling
πŸ”—https://edx.org/learn/data-science/harvard-university-data-science-wrangling

20. Linear Algebra
πŸ”— https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra

21. Probability
πŸ”— https://pll.harvard.edu/course/data-science-probability

22. Introduction to Linear Models and Matrix Algebra
πŸ”—https://edx.org/learn/linear-algebra/harvard-university-introduction-to-linear-models-and-matrix-algebra

23. Data Science: Capstone
πŸ”— https://edx.org/learn/data-science/harvard-university-data-science-capstone

24. Data Analysis
πŸ”— https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis

25. IBM Data Science Professional Certificate
https://imp.i384100.net/9gxbbY

26. Neural Networks and Deep Learning
https://imp.i384100.net/DKrLn2

27. Supervised Machine Learning: Regression and Classification
https://imp.i384100.net/g1KJEA

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience
πŸ‘7
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘7πŸ‘1
A Complete Course to Learn Robotics and Perception

Notebook-based book "Introduction to Robotics and Perception" by Frank Dellaert and Seth Hutchinson

github.com/gtbook/robotics

roboticsbook.org/intro.html

#Robotics #Perception #AI #DeepLearning #ComputerVision #RoboticsCourse #MachineLearning #Education #RoboticsResearch #GitHub


⚑️ BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘4
Topic: 20 Important Python Questions on Reading and Organizing Images from Datasets

---

1. How can you read images from a directory using Python?
Use libraries like OpenCV (cv2.imread) or PIL (Image.open).

2. How do you organize images by class labels if they are stored in subfolders?
Iterate over each subfolder, treat folder names as labels, and map images accordingly.

3. What is the difference between OpenCV and PIL for image reading?
OpenCV reads images in BGR format and uses NumPy arrays; PIL uses RGB and has more image manipulation utilities.

4. How do you resize images before feeding them to a model?
Use cv2.resize() or PIL’s resize() method.

5. What is a good practice to handle different image sizes in datasets?
Resize all images to a fixed size or use data loaders that apply transformations.

6. How to convert images to NumPy arrays?
In OpenCV, images are already NumPy arrays; with PIL, use np.array(image).

7. How do you normalize images?
Scale pixel values, typically to \[0,1] by dividing by 255 or standardize with mean and std.

8. How can you load large datasets efficiently?
Use generators or data loaders to load images batch-wise instead of loading all at once.

9. What is `torchvision.datasets.ImageFolder`?
A PyTorch utility to load images from a directory with subfolders as class labels.

10. How do you apply transformations and augmentations during image loading?
Use torchvision.transforms or TensorFlow preprocessing layers.

11. How can you split datasets into training and validation sets?
Use libraries like sklearn.model_selection.train_test_split or parameters in dataset loaders.

12. How do you handle corrupted or unreadable images during loading?
Use try-except blocks to catch exceptions and skip those files.

13. How do you batch images for training deep learning models?
Use DataLoader in PyTorch or TensorFlow datasets with batching enabled.

14. What are common image augmentations used during training?
Flips, rotations, scaling, cropping, color jittering, and normalization.

15. How do you convert labels (class names) to numeric indices?
Create a mapping dictionary from class names to indices.

16. How can you visualize images and labels after loading?
Use matplotlib’s imshow() and print labels alongside.

17. How to read images in grayscale?
With OpenCV: cv2.imread(path, cv2.IMREAD_GRAYSCALE).

18. How to save processed images after loading?
Use cv2.imwrite() or PIL.Image.save().

19. How do you organize dataset information (images and labels) in Python?
Use lists, dictionaries, or pandas DataFrames.

20. How to handle imbalanced datasets?
Use class weighting, oversampling, or undersampling techniques during data loading.

---

Summary

Mastering image loading and organization is fundamental for effective data preprocessing in computer vision projects.

---

#Python #ImageProcessing #DatasetHandling #OpenCV #DeepLearning

https://t.me/DataScience4
❀3
Forwarded from Machine Learning
In Python, building AI-powered Telegram bots unlocks massive potential for image generation, processing, and automationβ€”master this to create viral tools and ace full-stack interviews! πŸ€–

# Basic Bot Setup - The foundation (PTB v20+ Async)
from telegram.ext import Application, CommandHandler, MessageHandler, filters

async def start(update, context):
await update.message.reply_text(
"✨ AI Image Bot Active!\n"
"/generate - Create images from text\n"
"/enhance - Improve photo quality\n"
"/help - Full command list"
)

app = Application.builder().token("YOUR_BOT_TOKEN").build()
app.add_handler(CommandHandler("start", start))
app.run_polling()


# Image Generation - DALL-E Integration (OpenAI)
import openai
from telegram.ext import ContextTypes

openai.api_key = os.getenv("OPENAI_API_KEY")

async def generate(update: Update, context: ContextTypes.DEFAULT_TYPE):
if not context.args:
await update.message.reply_text("❌ Usage: /generate cute robot astronaut")
return

prompt = " ".join(context.args)
try:
response = openai.Image.create(
prompt=prompt,
n=1,
size="1024x1024"
)
await update.message.reply_photo(
photo=response['data'][0]['url'],
caption=f"🎨 Generated: *{prompt}*",
parse_mode="Markdown"
)
except Exception as e:
await update.message.reply_text(f"πŸ”₯ Error: {str(e)}")

app.add_handler(CommandHandler("generate", generate))


Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots

#Python #TelegramBot #AI #ImageGeneration #StableDiffusion #OpenAI #MachineLearning #CodingInterview #FullStack #Chatbots #DeepLearning #ComputerVision #Programming #TechJobs #DeveloperTips #CareerGrowth #CloudComputing #Docker #APIs #Python3 #Productivity #TechTips


https://t.me/DataScienceM 🦾
Please open Telegram to view this post
VIEW IN TELEGRAM