Code With Python
39K subscribers
841 photos
24 videos
22 files
746 links
This channel delivers clear, practical content for developers, covering Python, Django, Data Structures, Algorithms, and DSA – perfect for learning, coding, and mastering key programming skills.
Admin: @HusseinSheikho || @Hussein_Sheikho
Download Telegram
📚 Python Programming and SQL (2023)

1⃣ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.me/c/1854405158/468

💬 Tags: #python #SQL

USEFUL CHANNELS FOR YOU
👍92
📚 Leveling Up with SQL (2023)

1⃣ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.me/c/1854405158/470

💬 Tags: #SQL

USEFUL CHANNELS FOR YOU
👍5
📚 Grokking the SQL Interview (2023)

1⃣ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.me/c/1854405158/565

💬 Tags: #SQL

USEFUL CHANNELS FOR YOU
👍177
📚 Python Programming and SQL Bible (2024)

1⃣ Join Channel Download:
https://t.me/+MhmkscCzIYQ2MmM8

2⃣ Download Book: https://t.me/c/1854405158/1371

💬 Tags: #sql #python

👉 BEST DATA SCIENCE CHANNELS ON TELEGRAM 👈
👍4
Free Certification Courses to Learn Data Analytics in 2025:

1. Python
🔗 https://imp.i384100.net/5gmXXo

2. SQL
🔗 https://edx.org/learn/relational-databases/stanford-university-databases-relational-databases-and-sql

3. Statistics and R
🔗 https://edx.org/learn/r-programming/harvard-university-statistics-and-r

4. Data Science: R Basics
🔗https://edx.org/learn/r-programming/harvard-university-data-science-r-basics

5. Excel and PowerBI
🔗 https://learn.microsoft.com/en-gb/training/paths/modern-analytics/

6. Data Science: Visualization
🔗https://edx.org/learn/data-visualization/harvard-university-data-science-visualization

7. Data Science: Machine Learning
🔗https://edx.org/learn/machine-learning/harvard-university-data-science-machine-learning

8. R
🔗https://imp.i384100.net/rQqomy

9. Tableau
🔗https://imp.i384100.net/MmW9b3

10. PowerBI
🔗 https://lnkd.in/dpmnthEA

11. Data Science: Productivity Tools
🔗 https://lnkd.in/dGhPYg6N

12. Data Science: Probability
🔗https://mygreatlearning.com/academy/learn-for-free/courses/probability-for-data-science

13. Mathematics
🔗http://matlabacademy.mathworks.com

14. Statistics
🔗 https://lnkd.in/df6qksMB

15. Data Visualization
🔗https://imp.i384100.net/k0X6vx

16. Machine Learning
🔗 https://imp.i384100.net/nLbkN9

17. Deep Learning
🔗 https://imp.i384100.net/R5aPOR

18. Data Science: Linear Regression
🔗https://pll.harvard.edu/course/data-science-linear-regression/2023-10

19. Data Science: Wrangling
🔗https://edx.org/learn/data-science/harvard-university-data-science-wrangling

20. Linear Algebra
🔗 https://pll.harvard.edu/course/data-analysis-life-sciences-2-introduction-linear-models-and-matrix-algebra

21. Probability
🔗 https://pll.harvard.edu/course/data-science-probability

22. Introduction to Linear Models and Matrix Algebra
🔗https://edx.org/learn/linear-algebra/harvard-university-introduction-to-linear-models-and-matrix-algebra

23. Data Science: Capstone
🔗 https://edx.org/learn/data-science/harvard-university-data-science-capstone

24. Data Analysis
🔗 https://pll.harvard.edu/course/data-analysis-life-sciences-4-high-dimensional-data-analysis

25. IBM Data Science Professional Certificate
https://imp.i384100.net/9gxbbY

26. Neural Networks and Deep Learning
https://imp.i384100.net/DKrLn2

27. Supervised Machine Learning: Regression and Classification
https://imp.i384100.net/g1KJEA

#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #SupervisedLearning #IBMDataScience #FreeCourses #Certification #LearnDataScience
👍7
Python, Bash and SQL Essentials for Data Engineering Specialization

What you'll learn
Develop #dataengineering solutions with a minimal and essential subset of the Python language and the Linux environment

Design scripts to connect and query a #SQL #database using #Python

Use a #scraping library in Python to read, identify and extract data from websites

Enroll Free: https://www.coursera.org/specializations/python-bash-sql-data-engineering-duke

https://t.me/DataScience4
👍6
Data Management With Python, SQLite, and SQLAlchemy

In this tutorial, you’ll learn how to use:

1⃣ Flat files for data storage
🔢 SQL to improve access to persistent data
🔢 SQLite for data storage
🔢 SQLAlchemy to work with data as Python objects

Enroll Free: https://realpython.com/python-sqlite-sqlalchemy/

#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming #pythonquiz #ai #ml #machinelearning #datascience #django #SQLAlchemy #SQLite #SQL

https://t.me/DataScience4
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8
👍11👏1
Code With Python
Photo
# 📚 PyQt5 Tutorial - Part 4/6: Database Integration & Data Visualization
#PyQt5 #SQL #DataViz #MVC #ProfessionalDevelopment

Welcome to Part 4 of our PyQt5 series! This comprehensive lesson covers professional database integration, data visualization, and architectural patterns for building robust desktop applications.

---

## 🔹 Database Integration with PyQt5
### 1. SQLite Connection & Setup
from PyQt5.QtSql import QSqlDatabase, QSqlQuery

def setup_database():
db = QSqlDatabase.addDatabase("QSQLITE")
db.setDatabaseName("app_data.db")

if not db.open():
QMessageBox.critical(None, "Database Error", db.lastError().text())
return False

# Create tables if they don't exist
query = QSqlQuery()
query.exec_("""
CREATE TABLE IF NOT EXISTS contacts (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
email TEXT UNIQUE,
phone TEXT,
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
)
""")
return True


### 2. SQL Model-View Integration
from PyQt5.QtSql import QSqlTableModel

class ContactManager(QWidget):
def __init__(self):
super().__init__()
self.model = QSqlTableModel()
self.model.setTable("contacts")
self.model.select()

self.setup_ui()

def setup_ui(self):
layout = QVBoxLayout()

# Table View
self.table = QTableView()
self.table.setModel(self.model)
self.table.setSelectionBehavior(QTableView.SelectRows)
self.table.setEditTriggers(QTableView.DoubleClicked)

# Buttons
add_btn = QPushButton("Add Contact")
add_btn.clicked.connect(self.add_contact)

del_btn = QPushButton("Delete Selected")
del_btn.clicked.connect(self.delete_contact)

# Layout
btn_layout = QHBoxLayout()
btn_layout.addWidget(add_btn)
btn_layout.addWidget(del_btn)

layout.addWidget(self.table)
layout.addLayout(btn_layout)
self.setLayout(layout)

def add_contact(self):
name, ok = QInputDialog.getText(self, "Add Contact", "Name:")
if ok and name:
record = self.model.record()
record.setValue("name", name)
self.model.insertRecord(-1, record)
self.model.submitAll()

def delete_contact(self):
selected = self.table.selectionModel().selectedRows()
for index in sorted(selected, reverse=True):
self.model.removeRow(index.row())
self.model.submitAll()


### 3. PostgreSQL Connection
def connect_postgresql():
db = QSqlDatabase.addDatabase("QPSQL")
db.setHostName("localhost")
db.setDatabaseName("myapp")
db.setUserName("postgres")
db.setPassword("password")
db.setPort(5432)

if not db.open():
error = db.lastError()
QMessageBox.critical(None, "Database Error",
f"Code: {error.number()}\n{error.text()}")
return False
return True


---