Python | Machine Learning | Coding | R
67.1K subscribers
1.25K photos
89 videos
152 files
900 links
Help and ads: @hussein_sheikho

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

https://telega.io/?r=nikapsOH
Download Telegram
⚠️ O'Reilly Media, one of the most reputable publishers in the fields of programming, data mining, and AI, has made 10 data science books available to those interested in this field for free .

✔️ To use the online and PDF versions of these books, you can use the following links:👇

0⃣ Python Data Science Handbook
Online
PDF

1⃣ Python for Data Analysis book
Online
PDF

🔢 Fundamentals of Data Visualization book
Online
PDF

🔢 R for Data Science book
Online
PDF

🔢 Deep Learning for Coders book
Online
PDF

🔢 DS at the Command Line book
Online
PDF

🔢 Hands-On Data Visualization Book
Online
PDF

🔢 Think Stats book
Online
PDF

🔢 Think Bayes book
Online
PDF

🔢 Kafka, The Definitive Guide
Online
PDF

#DataScience #Python #DataAnalysis #DataVisualization #RProgramming #DeepLearning #CommandLine #HandsOnLearning #Statistics #Bayesian #Kafka #MachineLearning #AI #Programming #FreeBooks

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2313🏆3🔥2🎉2💯2👏1👨‍💻1🆒1
80 Python Interview Questions.pdf
410.4 KB
🚀 80 Python Interview Questions with Answers & Code! 🚀

Why this resource? 
- Covers frequently asked questions in Python interviews 

📄 Each question comes with detailed answers and ready-to-use code snippets, making it perfect for beginners and experienced developers alike. Whether you're preparing for a job interview or leveling up your Python skills, this guide has you covered! 👀 

🔥 Don’t miss out! Save this, share it, and start preparing today! 💼 

#Python #DataScience #Programming #InterviewPrep #Coding #PythonInterview #TechInterview #DataScientist #PythonProgramming #LearnPython #CodeNewbie #CareerGrowth #TechJobs #PythonCode #PythonTips 

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍5
👍105
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13👾2🎉1
Machine Learning from Scratch by Danny Friedman

This book is for readers looking to learn new machine learning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different algorithms create the models they do and the advantages and disadvantages of each one.

This book will be most helpful for those with practice in basic modeling. It does not review best practices—such as feature engineering or balancing response variables—or discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.

🌟 Link: https://dafriedman97.github.io/mlbook/content/introduction.html

#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN #Keras #R

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥32
@Codeprogrammer Cheat Sheet Numpy.pdf
213.7 KB
This checklist covers the essentials of NumPy in one place, helping you:

- Create and initialize arrays
- Perform element-wise computations
- Stack and split arrays
- Apply linear algebra functions
- Efficiently index, slice, and manipulate arrays

…and much more!

Feel free to share if you found this useful, and let me know in the comments if I missed anything!

⚡️ BEST DATA SCIENCE CHANNELS ON TELEGRAM 🌟

#NumPy #Python #DataScience #MachineLearning #Automation #DeepLearning #Programming #Tech #DataAnalysis #SoftwareDevelopment #Coding #TechTips #PythonForDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
9👍8
In Python, lists are versatile mutable sequences with built-in methods for adding, removing, searching, sorting, and more—covering all common scenarios like dynamic data manipulation, queues, or stacks. Below is a complete breakdown of all list methods, each with syntax, an example, and output, plus key built-in functions for comprehensive use.

📚 Adding Elements
append(x): Adds a single element to the end.

  lst = [1, 2]
lst.append(3)
print(lst) # Output: [1, 2, 3]


extend(iterable): Adds all elements from an iterable to the end.

  lst = [1, 2]
lst.extend([3, 4])
print(lst) # Output: [1, 2, 3, 4]


insert(i, x): Inserts x at index i (shifts elements right).

  lst = [1, 3]
lst.insert(1, 2)
print(lst) # Output: [1, 2, 3]


📚 Removing Elements
remove(x): Removes the first occurrence of x (raises ValueError if not found).

  lst = [1, 2, 2]
lst.remove(2)
print(lst) # Output: [1, 2]


pop(i=-1): Removes and returns the element at index i (default: last).

  lst = [1, 2, 3]
item = lst.pop(1)
print(item, lst) # Output: 2 [1, 3]


clear(): Removes all elements.

  lst = [1, 2, 3]
lst.clear()
print(lst) # Output: []


📚 Searching and Counting
count(x): Returns the number of occurrences of x.

  lst = [1, 2, 2, 3]
print(lst.count(2)) # Output: 2


index(x[, start[, end]]): Returns the lowest index of x in the slice (raises ValueError if not found).

  lst = [1, 2, 3, 2]
print(lst.index(2)) # Output: 1


📚 Ordering and Copying
sort(key=None, reverse=False): Sorts the list in place (ascending by default; stable sort).

  lst = [3, 1, 2]
lst.sort()
print(lst) # Output: [1, 2, 3]


reverse(): Reverses the elements in place.

  lst = [1, 2, 3]
lst.reverse()
print(lst) # Output: [3, 2, 1]


copy(): Returns a shallow copy of the list.

  lst = [1, 2]
new_lst = lst.copy()
print(new_lst) # Output: [1, 2]


📚 Built-in Functions for Lists (Common Cases)
len(lst): Returns the number of elements.

  lst = [1, 2, 3]
print(len(lst)) # Output: 3


min(lst): Returns the smallest element (raises ValueError if empty).

  lst = [3, 1, 2]
print(min(lst)) # Output: 1


max(lst): Returns the largest element.

  lst = [3, 1, 2]
print(max(lst)) # Output: 3


sum(lst[, start=0]): Sums the elements (start adds an offset).

  lst = [1, 2, 3]
print(sum(lst)) # Output: 6


sorted(lst, key=None, reverse=False): Returns a new sorted list (non-destructive).

  lst = [3, 1, 2]
print(sorted(lst)) # Output: [1, 2, 3]


These cover all standard operations (O(1) for append/pop from end, O(n) for most others). Use slicing lst[start:end:step] for advanced extraction, like lst[1:3] outputs ``.

#python #lists #datastructures #methods #examples #programming

@DataScience4
Please open Telegram to view this post
VIEW IN TELEGRAM
13👍7👏2
In Python, NumPy is the cornerstone of scientific computing, offering high-performance multidimensional arrays and tools for working with them—critical for data science interviews and real-world applications! 📊

import numpy as np

# Array Creation - The foundation of NumPy
arr = np.array([1, 2, 3])
zeros = np.zeros((2, 3)) # 2x3 matrix of zeros
ones = np.ones((2, 2), dtype=int) # Integer matrix
arange = np.arange(0, 10, 2) # [0 2 4 6 8]
linspace = np.linspace(0, 1, 5) # [0. 0.25 0.5 0.75 1. ]
print(linspace)


# Array Attributes - Master your data's structure
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print(matrix.shape) # Output: (2, 3)
print(matrix.ndim) # Output: 2
print(matrix.dtype) # Output: int64
print(matrix.size) # Output: 6


# Indexing & Slicing - Precision data access
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(data[1, 2]) # Output: 6 (row 1, col 2)
print(data[0:2, 1:3]) # Output: [[2 3], [5 6]]
print(data[:, -1]) # Output: [3 6 9] (last column)


# Reshaping Arrays - Transform dimensions effortlessly
flat = np.arange(6)
reshaped = flat.reshape(2, 3)
raveled = reshaped.ravel()
print(reshaped)
# Output: [[0 1 2], [3 4 5]]
print(raveled) # Output: [0 1 2 3 4 5]


# Stacking Arrays - Combine datasets vertically/horizontally
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(np.vstack((a, b))) # Vertical stack
# Output: [[1 2 3], [4 5 6]]
print(np.hstack((a, b))) # Horizontal stack
# Output: [1 2 3 4 5 6]


# Mathematical Operations - Vectorized calculations
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
print(x + y) # Output: [5 7 9]
print(x * 2) # Output: [2 4 6]
print(np.dot(x, y)) # Output: 32 (1*4 + 2*5 + 3*6)


# Broadcasting Magic - Operate on mismatched shapes
matrix = np.array([[1, 2, 3], [4, 5, 6]])
scalar = 10
print(matrix + scalar)
# Output: [[11 12 13], [14 15 16]]


# Aggregation Functions - Statistical power in one line
values = np.array([1, 5, 3, 9, 7])
print(np.sum(values)) # Output: 25
print(np.mean(values)) # Output: 5.0
print(np.max(values)) # Output: 9
print(np.std(values)) # Output: 2.8284271247461903


# Boolean Masking - Filter data like a pro
temperatures = np.array([18, 25, 12, 30, 22])
hot_days = temperatures > 24
print(temperatures[hot_days]) # Output: [25 30]


# Random Number Generation - Simulate real-world data
print(np.random.rand(2, 2)) # Uniform distribution
print(np.random.randn(3)) # Normal distribution
print(np.random.randint(0, 10, (2, 3))) # Random integers


# Linear Algebra Essentials - Solve equations like a physicist
A = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])
x = np.linalg.solve(A, b)
print(x) # Output: [2. 3.] (Solution to 3x+y=9 and x+2y=8)

# Matrix inverse and determinant
print(np.linalg.inv(A)) # Output: [[ 0.4 -0.2], [-0.2 0.6]]
print(np.linalg.det(A)) # Output: 5.0


# File Operations - Save/load your computational work
data = np.array([[1, 2], [3, 4]])
np.save('array.npy', data)
loaded = np.load('array.npy')
print(np.array_equal(data, loaded)) # Output: True


# Interview Power Move: Vectorization vs Loops
# 10x faster than native Python loops!
def square_sum(n):
arr = np.arange(n)
return np.sum(arr ** 2)

print(square_sum(5)) # Output: 30 (0²+1²+2²+3²+4²)


# Pro Tip: Memory-efficient data processing
# Process 1GB array without loading entire dataset
large_array = np.memmap('large_data.bin', dtype='float32', mode='r', shape=(1000000, 100))
print(large_array[0:5, 0:3]) # Process small slice


By: @DataScienceQ 🚀

#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
4
In Python, image processing unlocks powerful capabilities for computer vision, data augmentation, and automation—master these techniques to excel in ML engineering interviews and real-world applications! 🖼

# PIL/Pillow Basics - The essential image library
from PIL import Image

# Open and display image
img = Image.open("input.jpg")
img.show()

# Convert formats
img.save("output.png")
img.convert("L").save("grayscale.jpg") # RGB to grayscale

# Basic transformations
img.rotate(90).save("rotated.jpg")
img.resize((300, 300)).save("resized.jpg")
img.transpose(Image.FLIP_LEFT_RIGHT).save("mirrored.jpg")


more explain: https://hackmd.io/@husseinsheikho/imageprocessing

#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
1