Introduction to Deep Learning.pdf
10.5 MB
Introduction to Deep Learning
As we continue to push the boundaries of what's possible with artificial intelligence, I wanted to take a moment to share some insights on one of the most exciting fields in AI: Deep Learning.
Deep Learning is a subset of machine learning that uses neural networks to analyze and interpret data. These neural networks are designed to mimic the human brain, with layers of interconnected nodes (neurons) that process and transmit information.
What makes Deep Learning so powerful?
Ability to learn from large datasets: Deep Learning algorithms can learn from vast amounts of data, including images, speech, and text.
Improved accuracy: Deep Learning models can achieve state-of-the-art performance in tasks such as image recognition, natural language processing, and speech recognition.
Ability to generalize: Deep Learning models can generalize well to new, unseen data, making them highly effective in real-world applications.
Real-world applications of Deep Learning
Computer Vision: Self-driving cars, facial recognition, object detection
Natural Language Processing: Language translation, text summarization, sentiment analysis
Speech Recognition: Virtual assistants, voice-controlled devices.
#DeepLearning #AI #MachineLearning #NeuralNetworks #ArtificialIntelligence #DataScience #ComputerVision #NLP #SpeechRecognition #TechInnovation
As we continue to push the boundaries of what's possible with artificial intelligence, I wanted to take a moment to share some insights on one of the most exciting fields in AI: Deep Learning.
Deep Learning is a subset of machine learning that uses neural networks to analyze and interpret data. These neural networks are designed to mimic the human brain, with layers of interconnected nodes (neurons) that process and transmit information.
What makes Deep Learning so powerful?
Ability to learn from large datasets: Deep Learning algorithms can learn from vast amounts of data, including images, speech, and text.
Improved accuracy: Deep Learning models can achieve state-of-the-art performance in tasks such as image recognition, natural language processing, and speech recognition.
Ability to generalize: Deep Learning models can generalize well to new, unseen data, making them highly effective in real-world applications.
Real-world applications of Deep Learning
Computer Vision: Self-driving cars, facial recognition, object detection
Natural Language Processing: Language translation, text summarization, sentiment analysis
Speech Recognition: Virtual assistants, voice-controlled devices.
#DeepLearning #AI #MachineLearning #NeuralNetworks #ArtificialIntelligence #DataScience #ComputerVision #NLP #SpeechRecognition #TechInnovation
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11
This media is not supported in your browser
VIEW IN TELEGRAM
GPU by hand ✍️ I drew this to show how a GPU speeds up an array operation of 8 elements in parallel over 4 threads in 2 clock cycles. Read more 👇
CPU
• It has one core.
• Its global memory has 120 locations (0-119).
• To use the GPU, it needs to copy data from the global memory to the GPU.
• After GPU is done, it will copy the results back.
GPU
• It has four cores to run four threads (0-3).
• It has a register file of 28 locations (0-27)
• This register file has four banks (0-3).
• All threads share the same register file.
• But they must read/write using the four banks.
• Each bank allows 2 reads (Read 0, Read 1) and 1 write in a single clock cycle.
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
CPU
• It has one core.
• Its global memory has 120 locations (0-119).
• To use the GPU, it needs to copy data from the global memory to the GPU.
• After GPU is done, it will copy the results back.
GPU
• It has four cores to run four threads (0-3).
• It has a register file of 28 locations (0-27)
• This register file has four banks (0-3).
• All threads share the same register file.
• But they must read/write using the four banks.
• Each bank allows 2 reads (Read 0, Read 1) and 1 write in a single clock cycle.
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤4
What is torch.nn really?
This article explains it quite well.
📌 Read
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
When I started working with PyTorch, my biggest question was: "What is torch.nn?".
This article explains it quite well.
📌 Read
#pytorch #AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5
#DataScience #SQL #Python #MachineLearning #Statistics #BusinessAnalytics #ProductCaseStudies #DataScienceProjects #InterviewPrep #LearnDataScience #YouTubeLearning #CodingInterview #MLInterview #SQLProjects #PythonForDataScience
Please open Telegram to view this post
VIEW IN TELEGRAM
❤15👍3🎉1
📚 JaidedAI/EasyOCR — an open-source Python library for Optical Character Recognition (OCR) that's easy to use and supports over 80 languages out of the box.
### 🔍 Key Features:
🔸 Extracts text from images and scanned documents — including handwritten notes and unusual fonts
🔸 Supports a wide range of languages like English, Russian, Chinese, Arabic, and more
🔸 Built on PyTorch — uses modern deep learning models (not the old-school Tesseract)
🔸 Simple to integrate into your Python projects
### ✅ Example Usage:
### 📌 Ideal For:
✅ Text extraction from photos, scans, and documents
✅ Embedding OCR capabilities in apps (e.g. automated data entry)
🔗 GitHub: https://github.com/JaidedAI/EasyOCR
👉 Follow us for more: @DataScienceN
#Python #OCR #MachineLearning #ComputerVision #EasyOCR
### 🔍 Key Features:
🔸 Extracts text from images and scanned documents — including handwritten notes and unusual fonts
🔸 Supports a wide range of languages like English, Russian, Chinese, Arabic, and more
🔸 Built on PyTorch — uses modern deep learning models (not the old-school Tesseract)
🔸 Simple to integrate into your Python projects
### ✅ Example Usage:
import easyocr
reader = easyocr.Reader(['en', 'ru']) # Choose supported languages
result = reader.readtext('image.png')
### 📌 Ideal For:
✅ Text extraction from photos, scans, and documents
✅ Embedding OCR capabilities in apps (e.g. automated data entry)
🔗 GitHub: https://github.com/JaidedAI/EasyOCR
👉 Follow us for more: @DataScienceN
#Python #OCR #MachineLearning #ComputerVision #EasyOCR
❤3👎1🎉1
Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?
Basic Concepts (Q1–Q15)
Architecture & Components (Q16–Q30)
Attention & Transformers (Q31–Q45)
Training & Optimization (Q46–Q55)
Advanced & Real-World Applications (Q56–Q65)
Answer Key & Explanations
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6
🚀 Comprehensive Guide: How to Prepare for an Image Processing Job Interview – 500 Most Common Interview Questions
Let's start: https://hackmd.io/@husseinsheikho/IP
#ImageProcessing #ComputerVision #OpenCV #Python #InterviewPrep #DigitalImageProcessing #MachineLearning #AI #SignalProcessing #ComputerGraphics
Let's start: https://hackmd.io/@husseinsheikho/IP
#ImageProcessing #ComputerVision #OpenCV #Python #InterviewPrep #DigitalImageProcessing #MachineLearning #AI #SignalProcessing #ComputerGraphics
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👎1🔥1
🚀 Comprehensive Guide: How to Prepare for a Graph Neural Networks (GNN) Job Interview – 350 Most Common Interview Questions
Read: https://hackmd.io/@husseinsheikho/GNN-interview
#GNN #GraphNeuralNetworks #MachineLearning #DeepLearning #AI #DataScience #PyTorchGeometric #DGL #NodeClassification #LinkPrediction #GraphML
Read: https://hackmd.io/@husseinsheikho/GNN-interview
#GNN #GraphNeuralNetworks #MachineLearning #DeepLearning #AI #DataScience #PyTorchGeometric #DGL #NodeClassification #LinkPrediction #GraphML
✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk
📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❤8
This media is not supported in your browser
VIEW IN TELEGRAM
┌
└
#Python #OpenCV #Automation #ML #AI #DEEPLEARNING #MACHINELEARNING #ComputerVision
Please open Telegram to view this post
VIEW IN TELEGRAM
❤9👍4💯1🏆1
𝗣𝗿𝗲𝗽𝗮𝗿𝗲 𝗳𝗼𝗿 𝗝𝗼𝗯 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄𝘀.
In DS or AI/ML interviews, you need to be able to explain models, debug them live, and design AI/ML systems from scratch. If you can’t demonstrate this during an interview, expect to hear, “We’ll get back to you.”
The attached person's name is Chip Huyen. Hopefully you know her; if not, then I can't help you here. She is probably one of the finest authors in the field of AI/ML.
She designed proper documentation/a book for common ML interview questions.
Target Audiences: ML engineer, a platform engineer, a research scientist, or you want to do ML but don’t yet know the differences among those titles.Check the comment section for links and repos.
📌 link:
https://huyenchip.com/ml-interviews-book/
https://t.me/CodeProgrammer🌟
In DS or AI/ML interviews, you need to be able to explain models, debug them live, and design AI/ML systems from scratch. If you can’t demonstrate this during an interview, expect to hear, “We’ll get back to you.”
The attached person's name is Chip Huyen. Hopefully you know her; if not, then I can't help you here. She is probably one of the finest authors in the field of AI/ML.
She designed proper documentation/a book for common ML interview questions.
Target Audiences: ML engineer, a platform engineer, a research scientist, or you want to do ML but don’t yet know the differences among those titles.Check the comment section for links and repos.
https://huyenchip.com/ml-interviews-book/
#JobInterview #MachineLearning #AI #DataScience #MLEngineer #AIInterview #TechCareers #DeepLearning #AICommunity #MLSystems #CareerGrowth #AIJobs #ChipHuyen #InterviewPrep #DataScienceCommunit
https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6💯2
🤖🧠 The Little Book of Deep Learning – A Complete Summary and Chapter-Wise Overview
🗓️ 08 Oct 2025
📚 AI News & Trends
In the ever-evolving world of Artificial Intelligence, deep learning continues to be the driving force behind breakthroughs in computer vision, speech recognition and natural language processing. For those seeking a clear, structured and accessible guide to understanding how deep learning really works, “The Little Book of Deep Learning” by François Fleuret is a gem. This ...
#DeepLearning #ArtificialIntelligence #MachineLearning #NeuralNetworks #AIGuides #FrancoisFleuret
🗓️ 08 Oct 2025
📚 AI News & Trends
In the ever-evolving world of Artificial Intelligence, deep learning continues to be the driving force behind breakthroughs in computer vision, speech recognition and natural language processing. For those seeking a clear, structured and accessible guide to understanding how deep learning really works, “The Little Book of Deep Learning” by François Fleuret is a gem. This ...
#DeepLearning #ArtificialIntelligence #MachineLearning #NeuralNetworks #AIGuides #FrancoisFleuret
❤6
🤖🧠 Build a Large Language Model From Scratch: A Step-by-Step Guide to Understanding and Creating LLMs
🗓️ 08 Oct 2025
📚 AI News & Trends
In recent years, Large Language Models (LLMs) have revolutionized the world of Artificial Intelligence (AI). From ChatGPT and Claude to Llama and Mistral, these models power the conversational systems, copilots, and generative tools that dominate today’s AI landscape. However, for most developers and learners, the inner workings of these systems remain a mystery until now. ...
#LargeLanguageModels #LLM #ArtificialIntelligence #DeepLearning #MachineLearning #AIGuides
🗓️ 08 Oct 2025
📚 AI News & Trends
In recent years, Large Language Models (LLMs) have revolutionized the world of Artificial Intelligence (AI). From ChatGPT and Claude to Llama and Mistral, these models power the conversational systems, copilots, and generative tools that dominate today’s AI landscape. However, for most developers and learners, the inner workings of these systems remain a mystery until now. ...
#LargeLanguageModels #LLM #ArtificialIntelligence #DeepLearning #MachineLearning #AIGuides
❤3
🤖🧠 Mastering Large Language Models: Top #1 Complete Guide to Maxime Labonne’s LLM Course
🗓️ 22 Oct 2025
📚 AI News & Trends
In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...
#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
🗓️ 22 Oct 2025
📚 AI News & Trends
In the rapidly evolving landscape of artificial intelligence, large language models (LLMs) have become the foundation of modern AI innovation powering tools like ChatGPT, Claude, Gemini and countless enterprise AI applications. However, building, fine-tuning and deploying these models require deep technical understanding and hands-on expertise. To bridge this knowledge gap, Maxime Labonne, a leading AI ...
#LLM #ArtificialIntelligence #MachineLearning #DeepLearning #AIEngineering #LargeLanguageModels
❤2🎉1
🤖🧠 The Ultimate #1 Collection of AI Books In Awesome-AI-Books Repository
🗓️ 22 Oct 2025
📚 AI News & Trends
Artificial Intelligence (AI) has emerged as one of the most transformative technologies of the 21st century. From powering self-driving cars to enabling advanced conversational AI like ChatGPT, AI is redefining how humans interact with machines. However, mastering AI requires a strong foundation in theory, mathematics, programming and hands-on experimentation. For enthusiasts, students and professionals seeking ...
#ArtificialIntelligence #AIBooks #MachineLearning #DeepLearning #AIResources #TechBooks
🗓️ 22 Oct 2025
📚 AI News & Trends
Artificial Intelligence (AI) has emerged as one of the most transformative technologies of the 21st century. From powering self-driving cars to enabling advanced conversational AI like ChatGPT, AI is redefining how humans interact with machines. However, mastering AI requires a strong foundation in theory, mathematics, programming and hands-on experimentation. For enthusiasts, students and professionals seeking ...
#ArtificialIntelligence #AIBooks #MachineLearning #DeepLearning #AIResources #TechBooks
❤2🔥1
🤖🧠 Master Machine Learning: Explore the Ultimate “Machine-Learning-Tutorials” Repository
🗓️ 23 Oct 2025
📚 AI News & Trends
In today’s data-driven world, Machine Learning (ML) has become the cornerstone of modern technology from intelligent chatbots to predictive analytics and recommendation systems. However, mastering ML isn’t just about coding, it requires a structured understanding of algorithms, statistics, optimization techniques and real-world problem-solving. That’s where Ujjwal Karn’s Machine-Learning-Tutorials GitHub repository stands out. This open-source, topic-wise ...
#MachineLearning #MLTutorials #ArtificialIntelligence #DataScience #OpenSource #AIEducation
🗓️ 23 Oct 2025
📚 AI News & Trends
In today’s data-driven world, Machine Learning (ML) has become the cornerstone of modern technology from intelligent chatbots to predictive analytics and recommendation systems. However, mastering ML isn’t just about coding, it requires a structured understanding of algorithms, statistics, optimization techniques and real-world problem-solving. That’s where Ujjwal Karn’s Machine-Learning-Tutorials GitHub repository stands out. This open-source, topic-wise ...
#MachineLearning #MLTutorials #ArtificialIntelligence #DataScience #OpenSource #AIEducation
❤5👍1
Forwarded from Python Data Science Jobs & Interviews
In Python, NumPy is the cornerstone of scientific computing, offering high-performance multidimensional arrays and tools for working with them—critical for data science interviews and real-world applications! 📊
By: @DataScienceQ 🚀
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
import numpy as np
# Array Creation - The foundation of NumPy
arr = np.array([1, 2, 3])
zeros = np.zeros((2, 3)) # 2x3 matrix of zeros
ones = np.ones((2, 2), dtype=int) # Integer matrix
arange = np.arange(0, 10, 2) # [0 2 4 6 8]
linspace = np.linspace(0, 1, 5) # [0. 0.25 0.5 0.75 1. ]
print(linspace)
# Array Attributes - Master your data's structure
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print(matrix.shape) # Output: (2, 3)
print(matrix.ndim) # Output: 2
print(matrix.dtype) # Output: int64
print(matrix.size) # Output: 6
# Indexing & Slicing - Precision data access
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(data[1, 2]) # Output: 6 (row 1, col 2)
print(data[0:2, 1:3]) # Output: [[2 3], [5 6]]
print(data[:, -1]) # Output: [3 6 9] (last column)
# Reshaping Arrays - Transform dimensions effortlessly
flat = np.arange(6)
reshaped = flat.reshape(2, 3)
raveled = reshaped.ravel()
print(reshaped)
# Output: [[0 1 2], [3 4 5]]
print(raveled) # Output: [0 1 2 3 4 5]
# Stacking Arrays - Combine datasets vertically/horizontally
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
print(np.vstack((a, b))) # Vertical stack
# Output: [[1 2 3], [4 5 6]]
print(np.hstack((a, b))) # Horizontal stack
# Output: [1 2 3 4 5 6]
# Mathematical Operations - Vectorized calculations
x = np.array([1, 2, 3])
y = np.array([4, 5, 6])
print(x + y) # Output: [5 7 9]
print(x * 2) # Output: [2 4 6]
print(np.dot(x, y)) # Output: 32 (1*4 + 2*5 + 3*6)
# Broadcasting Magic - Operate on mismatched shapes
matrix = np.array([[1, 2, 3], [4, 5, 6]])
scalar = 10
print(matrix + scalar)
# Output: [[11 12 13], [14 15 16]]
# Aggregation Functions - Statistical power in one line
values = np.array([1, 5, 3, 9, 7])
print(np.sum(values)) # Output: 25
print(np.mean(values)) # Output: 5.0
print(np.max(values)) # Output: 9
print(np.std(values)) # Output: 2.8284271247461903
# Boolean Masking - Filter data like a pro
temperatures = np.array([18, 25, 12, 30, 22])
hot_days = temperatures > 24
print(temperatures[hot_days]) # Output: [25 30]
# Random Number Generation - Simulate real-world data
print(np.random.rand(2, 2)) # Uniform distribution
print(np.random.randn(3)) # Normal distribution
print(np.random.randint(0, 10, (2, 3))) # Random integers
# Linear Algebra Essentials - Solve equations like a physicist
A = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])
x = np.linalg.solve(A, b)
print(x) # Output: [2. 3.] (Solution to 3x+y=9 and x+2y=8)
# Matrix inverse and determinant
print(np.linalg.inv(A)) # Output: [[ 0.4 -0.2], [-0.2 0.6]]
print(np.linalg.det(A)) # Output: 5.0
# File Operations - Save/load your computational work
data = np.array([[1, 2], [3, 4]])
np.save('array.npy', data)
loaded = np.load('array.npy')
print(np.array_equal(data, loaded)) # Output: True
# Interview Power Move: Vectorization vs Loops
# 10x faster than native Python loops!
def square_sum(n):
arr = np.arange(n)
return np.sum(arr ** 2)
print(square_sum(5)) # Output: 30 (0²+1²+2²+3²+4²)
# Pro Tip: Memory-efficient data processing
# Process 1GB array without loading entire dataset
large_array = np.memmap('large_data.bin', dtype='float32', mode='r', shape=(1000000, 100))
print(large_array[0:5, 0:3]) # Process small slice
By: @DataScienceQ 🚀
#Python #NumPy #DataScience #CodingInterview #MachineLearning #ScientificComputing #DataAnalysis #Programming #TechJobs #DeveloperTips
❤4
🤖🧠 AI Projects : A Comprehensive Showcase of Machine Learning, Deep Learning and Generative AI
🗓️ 27 Oct 2025
📚 AI News & Trends
Artificial Intelligence (AI) is transforming industries across the globe, driving innovation through automation, data-driven insights and intelligent decision-making. Whether it’s predicting house prices, detecting diseases or building conversational chatbots, AI is at the core of modern digital solutions. The AI Project Gallery by Hema Kalyan Murapaka is an exceptional GitHub repository that curates a wide ...
#AI #MachineLearning #DeepLearning #GenerativeAI #ArtificialIntelligence #GitHub
🗓️ 27 Oct 2025
📚 AI News & Trends
Artificial Intelligence (AI) is transforming industries across the globe, driving innovation through automation, data-driven insights and intelligent decision-making. Whether it’s predicting house prices, detecting diseases or building conversational chatbots, AI is at the core of modern digital solutions. The AI Project Gallery by Hema Kalyan Murapaka is an exceptional GitHub repository that curates a wide ...
#AI #MachineLearning #DeepLearning #GenerativeAI #ArtificialIntelligence #GitHub
❤1
🤖🧠 Reinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiers Arun Shankar, AI Engineer at Google
🗓️ 27 Oct 2025
📚 AI News & Trends
Artificial Intelligence is evolving rapidly and at the center of this evolution is Reinforcement Learning (RL), the science of teaching machines to make better decisions through experience and feedback. In “Reinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiers”, Arun Shankar, an Applied AI Engineer at Google presents one of the ...
#ReinforcementLearning #LargeLanguageModels #ArtificialIntelligence #MachineLearning #AIEngineer #Google
🗓️ 27 Oct 2025
📚 AI News & Trends
Artificial Intelligence is evolving rapidly and at the center of this evolution is Reinforcement Learning (RL), the science of teaching machines to make better decisions through experience and feedback. In “Reinforcement Learning for Large Language Models: A Complete Guide from Foundations to Frontiers”, Arun Shankar, an Applied AI Engineer at Google presents one of the ...
#ReinforcementLearning #LargeLanguageModels #ArtificialIntelligence #MachineLearning #AIEngineer #Google
🔥2❤1
In Python, image processing unlocks powerful capabilities for computer vision, data augmentation, and automation—master these techniques to excel in ML engineering interviews and real-world applications! 🖼
more explain: https://hackmd.io/@husseinsheikho/imageprocessing
#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
# PIL/Pillow Basics - The essential image library
from PIL import Image
# Open and display image
img = Image.open("input.jpg")
img.show()
# Convert formats
img.save("output.png")
img.convert("L").save("grayscale.jpg") # RGB to grayscale
# Basic transformations
img.rotate(90).save("rotated.jpg")
img.resize((300, 300)).save("resized.jpg")
img.transpose(Image.FLIP_LEFT_RIGHT).save("mirrored.jpg")
more explain: https://hackmd.io/@husseinsheikho/imageprocessing
#Python #ImageProcessing #ComputerVision #Pillow #OpenCV #MachineLearning #CodingInterview #DataScience #Programming #TechJobs #DeveloperTips #AI #DeepLearning #CloudComputing #Docker #BackendDevelopment #SoftwareEngineering #CareerGrowth #TechTips #Python3
❤1