Python | Machine Learning | Coding | R
63K subscribers
1.13K photos
68 videos
144 files
792 links
List of our channels:
https://t.me/addlist/8_rRW2scgfRhOTc0

Discover powerful insights with Python, Machine Learning, Coding, and R—your essential toolkit for data-driven solutions, smart alg

Help and ads: @hussein_sheikho

https://telega.io/?r=nikapsOH
Download Telegram
🐼 20 of the most used Pandas + PDF functions

👨🏻‍💻 The first time I used Pandas, I was supposed to quickly clean and organize a raw and complex dataset with the help of Pandas functions. Using the groupby function, I was able to categorize the data and get in-depth analysis of customer behavior. Best of all, it was when I used loc and iloc that I could easily filter the data.

✔️ Since then I decided to prepare a list of the most used Pandas functions that I use on a daily basis. Now this list is ready! In the following, I will introduce 20 of the best and most used Pandas functions:



🏳️‍🌈 read_csv(): Fast data upload from CSV files

🏳️‍🌈 head(): look at the first five rows of the database to start..

🏳️‍🌈 info(): Checking data structure such as data type and empty values.

🏳️‍🌈 describe(): Generate descriptive statistics for numeric columns.

🏳️‍🌈 loc[ ]: accesses rows and columns by label or condition.

🏳️‍🌈 iloc[ ]: Access data by row number.

🏳️‍🌈 merge(): Merge dataframes with common columns.

🏳️‍🌈 groupby(): Grouping for easier analysis.

🏳️‍🌈 pivot_table(): Summarize data in pivot table format.

🏳️‍🌈 to_csv(): Save data as a CSV file.

🏳️‍🌈 pd.concat(): Concatenate multiple dataframes in rows or columns.

🏳️‍🌈 pd.melt(): Convert wide format data to long format.

🏳️‍🌈 pd.pivot_table(): Create a pivot table with multiple levels.

🏳️‍🌈 pd.cut(): Split the data into specific intervals.

🏳️‍🌈 pd.qcut(): Sort data by percentage.

🏳️‍🌈 pd.merge(): Merge data in database style for advanced linking.

🏳️‍🌈 DataFrame.apply(): Apply a custom function to the data.

🏳️‍🌈 DataFrame.groupby(): Analyze grouped data.

🏳️‍🌈 DataFrame.drop_duplicates(): Drop duplicate rows.

🏳️‍🌈 DataFrame.to_excel(): Save data directly to Excel file.


🐼 Pandas Functions
📄 PDF

#MachineLearning #DeepLearning #BigData #Datascience #ML #Pandas #DataVisualization #ArtificialInteligence #SoftwareEngineering #GenAI #deeplearning #ChatGPT #OpenAI #python #AI #keras #SQL #Statistics #LLMs #AIagents

http://t.me/codeprogrammer ⭐️
Please open Telegram to view this post
VIEW IN TELEGRAM
👍262
The Big Book of Large Language Models by Damien Benveniste

Chapters:
1⃣ Introduction

🔢 Language Models Before Transformers

🔢 Attention Is All You Need: The Original Transformer Architecture

🔢 A More Modern Approach To The Transformer Architecture

🔢 Multi-modal Large Language Models

🔢 Transformers Beyond Language Models

🔢 Non-Transformer Language Models

🔢 How LLMs Generate Text

🔢 From Words To Tokens

1⃣0⃣ Training LLMs to Follow Instructions

1⃣1⃣ Scaling Model Training

1⃣🔢 Fine-Tuning LLMs

1⃣🔢 Deploying LLMs

Read it: https://book.theaiedge.io/

#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍174👎1
🔰 How to become a data scientist in 2025?

👨🏻‍💻 If you want to become a data science professional, follow this path! I've prepared a complete roadmap with the best free resources where you can learn the essential skills in this field.


🔢 Step 1: Strengthen your math and statistics!

✏️ The foundation of learning data science is mathematics, linear algebra, statistics, and probability. Topics you should master:

Linear algebra: matrices, vectors, eigenvalues.

🔗 Course: MIT 18.06 Linear Algebra


Calculus: derivative, integral, optimization.

🔗 Course: MIT Single Variable Calculus


Statistics and probability: Bayes' theorem, hypothesis testing.

🔗 Course: Statistics 110



🔢 Step 2: Learn to code.

✏️ Learn Python and become proficient in coding. The most important topics you need to master are:

Python: Pandas, NumPy, Matplotlib libraries

🔗 Course: FreeCodeCamp Python Course

SQL language: Join commands, Window functions, query optimization.

🔗 Course: Stanford SQL Course

Data structures and algorithms: arrays, linked lists, trees.

🔗 Course: MIT Introduction to Algorithms



🔢 Step 3: Clean and visualize data

✏️ Learn how to process and clean data and then create an engaging story from it!

Data cleaning: Working with missing values ​​and detecting outliers.

🔗 Course: Data Cleaning

Data visualization: Matplotlib, Seaborn, Tableau

🔗 Course: Data Visualization Tutorial



🔢 Step 4: Learn Machine Learning

✏️ It's time to enter the exciting world of machine learning! You should know these topics:

Supervised learning: regression, classification.

Unsupervised learning: clustering, PCA, anomaly detection.

Deep learning: neural networks, CNN, RNN


🔗 Course: CS229: Machine Learning



🔢 Step 5: Working with Big Data and Cloud Technologies

✏️ If you're going to work in the real world, you need to know how to work with Big Data and cloud computing.

Big Data Tools: Hadoop, Spark, Dask

Cloud platforms: AWS, GCP, Azure

🔗 Course: Data Engineering



🔢 Step 6: Do real projects!

✏️ Enough theory, it's time to get coding! Do real projects and build a strong portfolio.

Kaggle competitions: solving real-world challenges.

End-to-End projects: data collection, modeling, implementation.

GitHub: Publish your projects on GitHub.

🔗 Platform: Kaggle🔗 Platform: ods.ai



🔢 Step 7: Learn MLOps and deploy models

✏️ Machine learning is not just about building a model! You need to learn how to deploy and monitor a model.

MLOps training: model versioning, monitoring, model retraining.

Deployment models: Flask, FastAPI, Docker

🔗 Course: Stanford MLOps Course



🔢 Step 8: Stay up to date and network

✏️ Data science is changing every day, so it is necessary to update yourself every day and stay in regular contact with experienced people and experts in this field.

Read scientific articles: arXiv, Google Scholar

Connect with the data community:

🔗 Site: Papers with code
🔗 Site: AI Research at Google


#ArtificialIntelligence #AI #MachineLearning #LargeLanguageModels #LLMs #DeepLearning #NLP #NaturalLanguageProcessing #AIResearch #TechBooks #AIApplications #DataScience #FutureOfAI #AIEducation #LearnAI #TechInnovation #AIethics #GPT #BERT #T5 #AIBook #AIEnthusiast

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3515👏1
10 Must-Know Python Libraries for LLMs in 2025

Large language models (LLMs) are changing the way we think about AI. They help with #chatbots, text generation, and search tools, among other natural language processing tasks and beyond. To work with #LLMs, you need the right #Python libraries.

In this article, we explore 10 of the Python libraries every developer should know in 2025.

Read and learn:
https://machinelearningmastery.com/10-must-know-python-libraries-for-llms-in-2025/

https://t.me/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7🔥2
Anyone trying to deeply understand Large Language Models.

Checkout
Foundations of Large Language Models


by Tong Xiao & Jingbo Zhu. It’s one of the clearest, most comprehensive resource.

⭐️ Paper Link: arxiv.org/pdf/2501.09223

#LLMs #LargeLanguageModels #AIResearch #DeepLearning #MachineLearning #AIResources #NLP #AITheory #FoundationModels #AIUnderstanding



✉️ Our Telegram channels: https://t.me/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
14
Please open Telegram to view this post
VIEW IN TELEGRAM
8💯2👨‍💻1