Numpy @CodeProgrammer.pdf
813.2 KB
π¨π»βπ» For the past few days, I've been busy preparing this comprehensive tutorial on the NumPy library for data science, trying to cover all the tips and tricks of this library.
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.me/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
π10π―7
Python #Pandas Cheat Sheet πΌ
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.me/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
π19π―3β€1
Keras Cheat Sheet: Neural Networks in Python
#keras #cheatsheet #python #library #programming #guide
https://t.me/CodeProgrammer
#keras #cheatsheet #python #library #programming #guide
https://t.me/CodeProgrammer
π10β€5
Deep Learning with Keras :: Cheat sheet
#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN #Keras #R
https://t.me/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
π13πΎ2π1
Top_100_Machine_Learning_Interview_Questions_Answers_Cheatshee.pdf
5.8 MB
Top 100 Machine Learning Interview Questions & Answers Cheatsheet
#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN #Keras #Rο»Ώ
https://t.me/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
π―13π7π₯1π1
Machine Learning from Scratch by Danny Friedman
This book is for readers looking to learn new machine learning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different algorithms create the models they do and the advantages and disadvantages of each one.
This book will be most helpful for those with practice in basic modeling. It does not review best practicesβsuch as feature engineering or balancing response variablesβor discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.
π Link: https://dafriedman97.github.io/mlbook/content/introduction.html
This book is for readers looking to learn new machine learning algorithms or understand algorithms at a deeper level. Specifically, it is intended for readers interested in seeing machine learning algorithms derived from start to finish. Seeing these derivations might help a reader previously unfamiliar with common algorithms understand how they work intuitively. Or, seeing these derivations might help a reader experienced in modeling understand how different algorithms create the models they do and the advantages and disadvantages of each one.
This book will be most helpful for those with practice in basic modeling. It does not review best practicesβsuch as feature engineering or balancing response variablesβor discuss in depth when certain models are more appropriate than others. Instead, it focuses on the elements of those models.
#DataScience #MachineLearning #CheatSheet #stats #analytics #ML #IA #AI #programming #code #rstats #python #deeplearning #DL #CNN #Keras #R
https://t.me/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
π12π₯3β€2
π¨π»βπ» "Where do I start now?" This was the first and biggest question I faced when I started my Data Science learning journey!
β
β
β
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.me/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
π16β€1π₯1
1. Get started with microsoft data analytics
https://learn.microsoft.com/en-us/training/paths/data-analytics-microsoft/
2. Introduction to version control with git
https://learn.microsoft.com/en-us/training/paths/intro-to-vc-git/
3. Microsoft azure ai fundamentals
https://learn.microsoft.com/en-us/training/paths/get-started-with-artificial-intelligence-on-azure/
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.me/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
π25
This free 10-part course on #GitHub will guide you from concept to #code as you start building #AI #agents:
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.me/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
π14β€3π¨βπ»2
#DataAnalytics #Python #SQL #RProgramming #DataScience #MachineLearning #DeepLearning #Statistics #DataVisualization #PowerBI #Tableau #LinearRegression #Probability #DataWrangling #Excel #AI #ArtificialIntelligence #BigData #DataAnalysis #NeuralNetworks #GAN #LearnDataScience #LLM #RAG #Mathematics #PythonProgramming #Keras
https://t.me/CodeProgrammerβ
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
π11β€2π―2