Zen of Python
20K subscribers
1.31K photos
188 videos
38 files
3.34K links
Полный Дзен Пайтона в одном канале

Разместить рекламу: @tproger_sales_bot

Правила общения: https://tprg.ru/rules

Другие каналы: @tproger_channels

Сайт: https://tprg.ru/site

Регистрация в перечне РКН: https://tprg.ru/xZOL
Download Telegram
Media is too big
VIEW IN TELEGRAM
Гвидо ван Россум дал интервью на Python-конфе PyBay

Основные темы:
— почему Python стал языком ИИ и что помогает ему быстро адаптироваться под новые задачи;
— надстройки типизации вроде Pydantic;
— функциональные примитивы а-ля lambda/map/reduce и отношение Гвидо к ним.

Ну и, конечно, про вайб-кодинг тоже поговорили.

В посте видео с дубляжом на русский, а оригинал на YT.

@zen_of_python
This media is not supported in your browser
VIEW IN TELEGRAM
Бро, ты можешь тут реализоваться и т.д.

Став частью ОТП Банка, именно ты сделаешь сильнее всю команду! Расти, учись и пробуй новое — это твой шанс создать что-то по-настоящему крутое.

Присоединяйся к ребятам и делись роликом с теми, кто тоже готов к переменам 🚀
👎2🙈1
ArgMan — легковесный менеджер аргументов командной строки для Python. Позиционируется как более простая замена argparse для небольших проектов.

Из коробки поддерживаются позиционные и опциональные параметры, короткие и длинные флаги вроде -v/--verbose, а также хуки для преобразования типов и валидации. Установка стандартная: pip install argman.

Сейчас не поддерживается парсинг из списка строк (не только из sys.argv) — автор обещает, что сначала допилит подкоманды, а затем добавит более универсальный парсинг. Исходники на GitHub, автор активно отвечает и готов вносить правки и дорабатывать.

На картинке к посту пример использования.

@zen_of_python
2
Please open Telegram to view this post
VIEW IN TELEGRAM
😁15👎7💊1
Media is too big
VIEW IN TELEGRAM
Гвидо ван Россум рассказал о Structured RAG — подходе, когда мы не просто режем документ на куски и превращаем в векторные эмбединги, а заранее вытаскиваем из текста структурированные «знания» (сущности, типы, действия, связи) и храним их в обычной базе. На этапе запроса вопрос тоже приводится к такому же структурному виду, ищутся совпадения по полям, а при достаточном лимите токенов добавляются исходные фрагменты текста. По словам Гвидо, это даёт более точные ответы, выдерживает длинные диалоги и ускоряет сложные запросы.​

Почему это лучше классического RAG с векторами: векторы громоздки, по большим документам совпадения «размываются», а полнота (recall) заметно проседает; озвучена оценка порядка 60%. В Structured RAG основная работа переносится на этап индексации, поэтому сам поиск получается дешевле и легче масштабируется. Плюс можно делать простые выводы по типам (например, если кто-то указан как artist, то это person), что помогает отвечать на вопросы «кто из людей…».​

На демо Гвидо показывал поиск по скетчам Monty Python и по собственной почте: система умеет пополнять память на лету, так что к фактам и диалогам можно возвращаться спустя время. Эмбеддинги при этом используются минимально — как вспомогательный механизм для синонимов и родственных терминов; а GraphRAG здесь не конкурент, а соседний подход: Structured RAG выигрывает инкрементальной индексацией без тяжёлой кластеризации.​

Код открыт: пакет typeagent уже доступен на PyPI. Исходники лежат в репозитории. Это ранний прототип; для запуска нужен ключ к LLM‑провайдеру (в докладе — OpenAI).

В посте дубляж на русский, оригинал на YT.

@zen_of_python
17
Статья «Building a CI/CD Pipeline Runner from Scratch in Python»

Автор показал, как собрать с нуля свой мини‑раннер для CI/CD на Python для случаев без доступа к GitHub Actions/GitLab Runner, чтобы понять, что происходит под капотом и запускать пайплайны в изолированных окружениях без облака. Ключевая идея простая: раннер — это оркестратор, который парсит YAML, строит граф зависимостей, запускает задачи в контейнерах, стримит логи и пробрасывает артефакты между задачами.​

Из примеров: классика со стадиями build/test/deploy, где build кладёт сборку в dist/, тесты берут контент из dist/ и запускаются параллельно, а деплой на прод запускается только в ветке main. Артефакты складываются во внутреннюю .pipeline_artifacts и перед каждым шагом подтягиваются по списку нужных задач, при этом рабочая папка монтируется в контейнер, а команды шага объединяются в одну строку shell.​

Такой раннер пригодится для локального теста конфигов или учебных задач, когда хочется гибкости без внешних сервисов. До продакшен уровня остаются распределённое выполнение, кеши зависимостей, матричные сборки, секреты, сервис‑контейнеры и ретраи, но базовая архитектура — парсер, планировщик, исполнитель и менеджер артефактов — уже закрывает основные потребности.

@zen_of_python
3
Forwarded from Типичный программист
С кем знакомятся типичные программисты: 2D-тян или живая девушка?

Согласно недавним исследованиям Vantage Point Counseling Services, треть американцев хотя бы раз состояла в романтических отношениях с ИИ. Появилось даже приложение Loverse для виртуальных знакомств, где вместо реальных людей роль партнёров выполняют чат-боты с искусственным интеллектом.

Мы решили провести своё исследование и выяснить где и с кем сегодня знакомятся пользователи стран СНГ. Пожалуйста, пройдите наш небольшой опрос. Это поможет нашему исследованию.

Пройти опрос.
4😢1
Все программисты немного Никита

@zen_of_python
😁16🎃52
Вы знали, что у нас есть канал с хитрыми задачками по Python?

Вот прямо сейчас там в комментариях обсуждаем задачу с подвохом.

Каждый рабочий день по одной задачке с квизом, можно сразу проверить себя. И через час пост с подробным объяснением, почему именно так.
🗿5
Занятный проект на Python из категории «потому что могу»: Rubiksolver

Коротко: это десктоп-приложение, которое через веб-камеру считывает состояние перемешанного кубика Рубика и показывает пошаговое решение с анимацией в окне на PySide6 с отрисовкой через OpenGL и обработкой изображения в OpenCV. Проект позиционируется как учебный — подойдёт тем, кто хочет понять базовые приёмы компьютерного зрения и графики на практике.​

Сканирование: показываете камере по одной грани по заранее заданным правилам. После скана жмёте Play, чтобы запустить анимацию, или листаете шаги кнопками Previous/Next — так удобно проверять, что распознание и сама сборка идут корректно.​

Установка: клонируете репозиторий, выполняете uv sync для зависимостей и запускаете uv run rubiksolver — автор использует современный менеджер uv, так что установка занимает минимум времени.

Автор отмечает, что на Android встречаются решалки, но чаще всего там состояние кубика приходится вбивать руками, без автосканирования камерой — здесь как раз закрыта эта боль.

@zen_of_python
This media is not supported in your browser
VIEW IN TELEGRAM
3👍121
Таков путь
8😁7🫡2
Обвязка вокруг SQLAlchemy Core — sqla-fancy-core. Это не очередной ORM, а надстройка для тех, кто любит писать запросы сам, но хочет строгую типизацию, поддержку асинхронности и понятные транзакции без «магии» сессий.

Главная фишка — другой способ описывать таблицы вместо table.c.column, который нормально дружит с проверкой типов и делает код понятнее. Плюс поверх движка добавлены обёртки и декораторы: они берут на себя создание подключений и управление транзакциями.

Пример:
import sqlalchemy as sa
from sqla_fancy_core import TableBuilder

tb = TableBuilder()

class Author:
id = tb.auto_id()
name = tb.string("name")
created_at = tb.created_at()
updated_at = tb.updated_at()

Table = tb("author")


Проект задуман под продакшен: для тех, кто хочет конструктор запросов вместо ORM, но без потери читаемости и безопасности. По словам автора, в отличие от Peewee тут есть аннотации типов и официальная работа с async, Piccolo менее гибкий и сильно навязан по архитектуре, а Pypika не защищает от SQL‑инъекций по умолчанию. В итоге это просто способ сделать SQLAlchemy Core чуть более строгим и удобным, не меняя стек целиком.

Есть отдельное демо по использованию.

@zen_of_python
1👎1👾1