Что такое замыкание и зачем оно нужно
Замыкания (Closures) — понятие, которое кажется сложным при первом знакомстве. Но на самом деле вы уже его скорее всего используете неосознанно, настолько это стало базой.
Представим программу, где пользователь вводит число, нажимает OK, и программа сохраняет это число в список, выводя все введённые значения:
Код работает, но есть проблема: переменная
🔘 функция зависит от переменной, объявленной в другом месте;
🔘 код становится менее гибким — нельзя просто перенести функцию в другой модуль, не взяв с собой
Замыкание помогает «связать» данные и логику в одном месте без использования классов:
Когда мы вызываем внешнюю функцию
Ключевая идея замыкания:
Даже когда
Используйте замыкания, если хотите:
🔘 инкапсулировать состояние в функции без создания класса;
🔘 нужно создать функцию-конфигуратор (например, с частично зафиксированными параметрами);
Замыкание — это функция, которая:
🔘 определена внутри другой функции;
🔘 использует переменные из внешней функции;
🔘 «запоминает» эти переменные даже после завершения внешней функции.
#основы
@zen_of_python
Замыкания (Closures) — понятие, которое кажется сложным при первом знакомстве. Но на самом деле вы уже его скорее всего используете неосознанно, настолько это стало базой.
Представим программу, где пользователь вводит число, нажимает OK, и программа сохраняет это число в список, выводя все введённые значения:
numbers = []
def enter_number(x):
numbers.append(x)
print(numbers)
enter_number(3) # [3]
enter_number(7) # [3, 7]
enter_number(4) # v
Код работает, но есть проблема: переменная
numbers
находится вне функции, то есть она глобальная. Это значит, что:numbers
.Замыкание помогает «связать» данные и логику в одном месте без использования классов:
def enter_number_outer():
numbers = [] # локальная переменная
def enter_number_inner(x):
numbers.append(x)
print(numbers)
return enter_number_inner
Когда мы вызываем внешнюю функцию
enter_number_outer()
, она создаёт свой контекст с переменной numbers
и возвращает внутреннюю функцию, которая имеет к ней доступ.
enter_num = enter_number_outer()
enter_num(3) # [3]
enter_num(7) # [3, 7]
enter_num(4) # [3, 7, 4]
Ключевая идея замыкания:
Внутренняя функция «замыкает» (сохраняет) значения переменных из области видимости внешней функции.
Даже когда
enter_number_outer()
завершает выполнение, её переменные не уничтожаются, потому что они нужны внутренней функции, которая всё ещё существует. Это и есть closure — функция, которая запоминает контекст, в котором была создана.Используйте замыкания, если хотите:
Замыкание — это функция, которая:
#основы
@zen_of_python
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤2🤣1
RunSnakeRun | Профайлер с GUI
Симпатичный и наглядный инструмент для анализа производительности Python-программ. Он показывает результаты профилирования (
На диаграмме размер прямоугольника отражает долю времени, потраченную на выполнение функции. Позволяет интерактивно «проваливаться» в вызовы и изучать вложенные функции. Отличный способ искать узкие места в проекте.
#инструмент
@zen_of_python
Симпатичный и наглядный инструмент для анализа производительности Python-программ. Он показывает результаты профилирования (
cProfile
, hotshot
и других форматов) в виде наглядной treemap-диаграммы.На диаграмме размер прямоугольника отражает долю времени, потраченную на выполнение функции. Позволяет интерактивно «проваливаться» в вызовы и изучать вложенные функции. Отличный способ искать узкие места в проекте.
#инструмент
@zen_of_python
❤7
Почему Python так популярен в 2025-м году?
Python стал культурным и технологическим феноменом, устойчиво удерживая позиции одного из самых любимых и широко используемых языков программирования. В 2025 году он занимает первое место сразу в нескольких рейтингах популярности ЯП.
Что делает Python таким популярным?
🔘 Легкость старта и понятный синтаксис
Одним из главных преимуществ с момента создания остаётся его читаемость и простота — код Python часто выглядит ближе к псевдокоду, чем к «машинной» записи. Это позволяет разработчикам сосредоточиться на логике, а не на деталях синтаксиса. Для новичков это часто первый язык программирования, с которым они знакомятся, — из-за низкого порога входа. Этот «эффект знакомства» закрепляет Python как язык выбора, особенно в образовательной и научной среде.
🔘 Ключевая роль в AI, ML и науке о данных
Python давно прочно обосновался в экосистеме машинного обучения, искусственного интеллекта и обработки данных. В отчёте JetBrains «The State of Python 2025» указано, что примерно 41% разработчиков используют Python специально для задач машинного обучения. Широкий набор библиотек и фреймворков: PyTorch, TensorFlow, Keras, scikit-learn, Hugging Face Transformers — все они предоставляют зрелые, постоянно развивающиеся инструменты для исследователей и продакшн-инженеров.
🔘 Универсальность: от скриптов до крупных систем
Python используется в самых разнообразных задачах:
— Веб-разработка: популярные фреймворки (Django, Flask, FastAPI) позволяют строить как простые приложения, так и масштабные сервисы;
— Автоматизация и инфраструктурные скрипты: благодаря лёгкости запуска, большому выбору библиотек и встроенной поддержке многих протоколов и форматов;
— Инструменты разработки, прототипы, доказательство концепции (POC): Python часто выбирают тогда, когда нужно быстро создать рабочее решение и проверить идею;
— Научные вычисления и инженерные задачи: благодаря библиотекам как NumPy, SciPy, Sympy и др.
Такой спектр применения делает Python «языком на все случаи», что снижает риск переключения на другой язык при росте проекта.
🔘 Сообщество, документация и экосистемный эффект
Невозможно недооценивать роль сообщества в успехе Python:
— Огромное количество библиотек и фреймворков, созданных сообществом, часто с открытым исходным кодом;
— Качественная документация, туториалы, обсуждения: многие проблемы уже задокументированы, многие вопросы обсуждены на форумах, в блогах и на Stack Overflow.
Эффект «чем больше пользователей — тем больше инструментов — тем больше новых пользователей»: эта положительная обратная связь укрепляет позиции языка.
🔘 Совместимость, обратная совместимость и эволюция
Python исторически стремится к обратной совместимости: код, написанный на старых версиях, часто может работать на новых с минимальными правками. Это снижает «технический долг» и барьеры для обновлений. К тому же новые версии языка приносят прирост производительности и оптимизации без значительного изменения синтаксиса. В отчёте указано, что многие разработчики просто не меняют версии, потому что текущая версия «удовлетворяет все нужды» — 53%.
Тем не менее, повышение производительности и оптимизации — весомый аргумент в пользу перехода, особенно для критичных к скорости проектов.
#факт
@zen_of_python
Python стал культурным и технологическим феноменом, устойчиво удерживая позиции одного из самых любимых и широко используемых языков программирования. В 2025 году он занимает первое место сразу в нескольких рейтингах популярности ЯП.
Что делает Python таким популярным?
Одним из главных преимуществ с момента создания остаётся его читаемость и простота — код Python часто выглядит ближе к псевдокоду, чем к «машинной» записи. Это позволяет разработчикам сосредоточиться на логике, а не на деталях синтаксиса. Для новичков это часто первый язык программирования, с которым они знакомятся, — из-за низкого порога входа. Этот «эффект знакомства» закрепляет Python как язык выбора, особенно в образовательной и научной среде.
Python давно прочно обосновался в экосистеме машинного обучения, искусственного интеллекта и обработки данных. В отчёте JetBrains «The State of Python 2025» указано, что примерно 41% разработчиков используют Python специально для задач машинного обучения. Широкий набор библиотек и фреймворков: PyTorch, TensorFlow, Keras, scikit-learn, Hugging Face Transformers — все они предоставляют зрелые, постоянно развивающиеся инструменты для исследователей и продакшн-инженеров.
Python используется в самых разнообразных задачах:
— Веб-разработка: популярные фреймворки (Django, Flask, FastAPI) позволяют строить как простые приложения, так и масштабные сервисы;
— Автоматизация и инфраструктурные скрипты: благодаря лёгкости запуска, большому выбору библиотек и встроенной поддержке многих протоколов и форматов;
— Инструменты разработки, прототипы, доказательство концепции (POC): Python часто выбирают тогда, когда нужно быстро создать рабочее решение и проверить идею;
— Научные вычисления и инженерные задачи: благодаря библиотекам как NumPy, SciPy, Sympy и др.
Такой спектр применения делает Python «языком на все случаи», что снижает риск переключения на другой язык при росте проекта.
Невозможно недооценивать роль сообщества в успехе Python:
— Огромное количество библиотек и фреймворков, созданных сообществом, часто с открытым исходным кодом;
— Качественная документация, туториалы, обсуждения: многие проблемы уже задокументированы, многие вопросы обсуждены на форумах, в блогах и на Stack Overflow.
Эффект «чем больше пользователей — тем больше инструментов — тем больше новых пользователей»: эта положительная обратная связь укрепляет позиции языка.
Python исторически стремится к обратной совместимости: код, написанный на старых версиях, часто может работать на новых с минимальными правками. Это снижает «технический долг» и барьеры для обновлений. К тому же новые версии языка приносят прирост производительности и оптимизации без значительного изменения синтаксиса. В отчёте указано, что многие разработчики просто не меняют версии, потому что текущая версия «удовлетворяет все нужды» — 53%.
Тем не менее, повышение производительности и оптимизации — весомый аргумент в пользу перехода, особенно для критичных к скорости проектов.
#факт
@zen_of_python
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
Logly | loguru на Rust
Python-библиотека для логирования всего и вся. Те же уровни логирования (TRACE, DEBUG, INFO, SUCCESS и проч.), тот же отлов исключений. Создатели обещают повышенную безопасность памяти, неблокирующие конкуррентные операции и все тонкие настройки, как у loguru.
Доступен в РФ: да
Цена: бесплатно
@prog_tools
Python-библиотека для логирования всего и вся. Те же уровни логирования (TRACE, DEBUG, INFO, SUCCESS и проч.), тот же отлов исключений. Создатели обещают повышенную безопасность памяти, неблокирующие конкуррентные операции и все тонкие настройки, как у loguru.
Доступен в РФ: да
Цена: бесплатно
@prog_tools
Python 3.14 на 27% быстрее предшественников
Сразу после выхода этой минорной версии языкового пакета с поддержкой free-threading (многопоточности без глобальной блокировки GIL), один разработчик провел тесты скорости. В подборку сравнения попали CPython 3.9–3.14, PyPy 3.11, Node.js 24 и Rust 1.9. Их сравнивали при рекурсивном вычислении чисел Фибоначчи и сортировке пузырьком. Подробнее о результатах в статье.
#факт
@zen_of_python
Сразу после выхода этой минорной версии языкового пакета с поддержкой free-threading (многопоточности без глобальной блокировки GIL), один разработчик провел тесты скорости. В подборку сравнения попали CPython 3.9–3.14, PyPy 3.11, Node.js 24 и Rust 1.9. Их сравнивали при рекурсивном вычислении чисел Фибоначчи и сортировке пузырьком. Подробнее о результатах в статье.
#факт
@zen_of_python
🔥8❤2❤🔥1
Forwarded from CTRL+S Health (ex. Сохранёнки программиста)
Чтобы не скрипеть, как скелет из Minecraft
Суставы — штука коварная. Пока всё ок, о них никто даже не вспоминает. А потом вдруг — щёлк, хруст и боль. Конечно, всегда лучше посоветоваться с врачом, но вот базовая еда, которая точно не окажется лишней для суставов:
— Жирная рыба — уменьшает воспаления, помогает суставам двигаться мягче.
— Яйца и печень — важны для прочного хряща.
— Желатин, холодец, бульоны — источник коллагена.
— Смородина, киви, перец — витамин C, который помогает восстанавливать ткани.
— Оливковое масло, орехи — убирают микровоспаления.
— Сыры и другие источники кальция — укрепляют кости, а с ними и суставы.
#суставы #еда
Суставы — штука коварная. Пока всё ок, о них никто даже не вспоминает. А потом вдруг — щёлк, хруст и боль. Конечно, всегда лучше посоветоваться с врачом, но вот базовая еда, которая точно не окажется лишней для суставов:
— Жирная рыба — уменьшает воспаления, помогает суставам двигаться мягче.
— Яйца и печень — важны для прочного хряща.
— Желатин, холодец, бульоны — источник коллагена.
— Смородина, киви, перец — витамин C, который помогает восстанавливать ткани.
— Оливковое масло, орехи — убирают микровоспаления.
— Сыры и другие источники кальция — укрепляют кости, а с ними и суставы.
#суставы #еда
❤2🤣1
pypiplus.com | Прогнозируем «ад зависимостей»
Утилита позволяет пробить любую библиотеку / фреймворк с pypi.org и узнать, от каких «соседей» она зависит и кто полагается на нее. Если в эпоху ИИ-копайлотов мы все немного превращаемся в системных архитекторов, то с такими сервисами это будет проходить с меньшим количеством последствий, однозначно.
#инструмент
@zen_of_python
Утилита позволяет пробить любую библиотеку / фреймворк с pypi.org и узнать, от каких «соседей» она зависит и кто полагается на нее. Если в эпоху ИИ-копайлотов мы все немного превращаемся в системных архитекторов, то с такими сервисами это будет проходить с меньшим количеством последствий, однозначно.
#инструмент
@zen_of_python
This media is not supported in your browser
VIEW IN TELEGRAM
PySCN | Cтатанализ вашего кода
Инструмент оценивает Python-проект по следующим параметрам:
— доля «мертвого» кода;
— задвоение кода;
— связанность классов друг с другом и проч.
В эпоху LLM-копайлотов анализ качества кода все так же актуален, так что сохраняем и пользуемся.
#инструмент
@zen_of_python
Инструмент оценивает Python-проект по следующим параметрам:
— доля «мертвого» кода;
— задвоение кода;
— связанность классов друг с другом и проч.
В эпоху LLM-копайлотов анализ качества кода все так же актуален, так что сохраняем и пользуемся.
#инструмент
@zen_of_python
✍7👀1
This media is not supported in your browser
VIEW IN TELEGRAM
The Farmer Was Replaced | Питонический симулятор фермы
На Steam релизнули необычную игру: вам предстоит создавать Python-код для дрона, чтобы тот поливал, пропалывал, копал и собирал. Довольно симпатичный UI, самое то позалипать на выходных.
#кек #обучение
@zen_of_python
На Steam релизнули необычную игру: вам предстоит создавать Python-код для дрона, чтобы тот поливал, пропалывал, копал и собирал. Довольно симпатичный UI, самое то позалипать на выходных.
#кек #обучение
@zen_of_python
🔥14👍5
Вопросы подписчиков
Zen of Python поддерживает новоприбывших (и не только) в особой рубрике. Как это работает:
— Спрашивайте что угодно (в комментариях под этим постом), связанное с Python. Здесь нет плохих вопросов!
— Сообщество вас поддержит. Самые интересные вопросы мы разберём в отдельном посте.
#обсуждение
@zen_of_python
Zen of Python поддерживает новоприбывших (и не только) в особой рубрике. Как это работает:
— Спрашивайте что угодно (в комментариях под этим постом), связанное с Python. Здесь нет плохих вопросов!
— Сообщество вас поддержит. Самые интересные вопросы мы разберём в отдельном посте.
#обсуждение
@zen_of_python
❤1
Когда джунам объясняют, что с программирование с GPT похоже на работу системного архитектора
#кек
@zen_of_python
#кек
@zen_of_python
👍4
Шпаргалка Pandas
Markdown-документ с листингом основных функций этого популярного фреймворка про:
— импорт / экспорт данных;
— просмотр и анализ датафрейма;
— фильтрацию;
— группировку;
— объединение;
— статистику и проч.
#шпаргалка
@zen_of_python
Markdown-документ с листингом основных функций этого популярного фреймворка про:
— импорт / экспорт данных;
— просмотр и анализ датафрейма;
— фильтрацию;
— группировку;
— объединение;
— статистику и проч.
#шпаргалка
@zen_of_python
Как писать docstrings
Докстринги (буквально «строки документации») — это встроенная в код документация (обычно после инициализации функции / класса и прочих объектов между двумя '''), которую могут читать люди и инструменты (help(), pydoc, автогенераторы). В этом лонгриде мы разберемся, где и как их писать.
Зачем нужны docstrings — и чем они отличаются от комментариев
🔘 Комментарии (#) объясняют реализацию и помогают разработчикам; интерпретатор их игнорирует.
🔘 Докстринги — это строковые литералы (обычно в
Докстринги описывают интерфейс (что делает код, какие аргументы и что возвращает), а комментарий — реализацию и все остальное.
Многострочные докстринги используются когда нужно подробнее описать параметры, поведение, побочные эффекты, примеры использования. По PEP 257 закрывающие кавычки обычно ставят на отдельной строке в многострочном docstring:
Чтобы получить доступ к docstring в коде и терминале, вызываем:
🔘
🔘
🔘
Что писать в docstring для модулей, функций и классов
Модуль:
🔘 Краткое описание назначения модуля.
🔘 При необходимости — описание экспортируемых переменных/классов/функций, примеры использования.
Функция / метод:
🔘 Краткое резюме (1–2 предложения).
🔘 Секция
🔘 Секция
🔘 Исключения: какие ошибки может выбросить функция (опционально, но полезно).
🔘 Пример использования или заметки о поведении (если нужно).
Класс:
🔘 Краткое описание назначения класса.
🔘 Описание атрибутов (публичных), краткая информация о методах (если интерфейс не очевиден).
🔘 Для сложных иерархий — примеры создания/использования. ([realpython.com][1])
#основы
@zen_of_python
Докстринги (буквально «строки документации») — это встроенная в код документация (обычно после инициализации функции / класса и прочих объектов между двумя '''), которую могут читать люди и инструменты (help(), pydoc, автогенераторы). В этом лонгриде мы разберемся, где и как их писать.
Зачем нужны docstrings — и чем они отличаются от комментариев
"""`), помещённые сразу после определения модуля / функции / класса / метода; они сохраняются в атрибуте
.__doc__` и доступны в рантайме (через .__doc__
, help()
и инструментах вроде pydoc
. Докстринги описывают интерфейс (что делает код, какие аргументы и что возвращает), а комментарий — реализацию и все остальное.
Многострочные докстринги используются когда нужно подробнее описать параметры, поведение, побочные эффекты, примеры использования. По PEP 257 закрывающие кавычки обычно ставят на отдельной строке в многострочном docstring:
def get_book(publication_year, title):
"""
Retrieve a Harry Potter book by its publication year and name.
Parameters:
publication_year (int): The year the book was published.
title (str): The title of the book.
Returns:
str: A sentence describing the book and its publication year.
"""
Чтобы получить доступ к docstring в коде и терминале, вызываем:
obj.__doc__
— возвращает сырой docstring (часто краткий);help(obj)
— даёт структурированный вывод, полезный для модулей и классов;python -m pydoc module
— позволяет просматривать документацию из терминала и генерировать статичные страницы. Что писать в docstring для модулей, функций и классов
Модуль:
Функция / метод:
Parameters`/`Args
: имена параметров, типы, краткое описание.Returns
/ Yields
: что возвращается, тип.Класс:
#основы
@zen_of_python
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Вайсфельд М. Объектно-ориентированный подход. 5-е издание
Классическая книга для целого семейства языков вроде Python. Читать будет непросто, ведь там может встретиться глава про SOLID с примерами на C++, однако это наилучший способ понять философию создателей таких языков. Начинающим такое советовать, наверное, не стоит, но если вы уже погружались в горнило разработки и выпуска ПО в прод, то книга точно сделает из вас лучшего специалиста.
#книга
@zen_of_python
Классическая книга для целого семейства языков вроде Python. Читать будет непросто, ведь там может встретиться глава про SOLID с примерами на C++, однако это наилучший способ понять философию создателей таких языков. Начинающим такое советовать, наверное, не стоит, но если вы уже погружались в горнило разработки и выпуска ПО в прод, то книга точно сделает из вас лучшего специалиста.
#книга
@zen_of_python
This media is not supported in your browser
VIEW IN TELEGRAM
Python митап от Авито 27 октября в Москве! ☄
Вечером 27 октября вас ждут в офисе на Лесной, чтобы обсудить:
➡ кейс оптимизации GC в Python от Саши Федосеева, backend-инженера из команды Main Page Tech Авито;
➡ как mypy укрощает Python в большой компании вместе с Сергеем Яхницким из Яндекса.
После докладов спикеры в формате круглого стола вместе с участниками обсудят, подходит ли Python для запуска больших нагруженных решений.
Для тех, кто не успевает вырваться из офиса или дома, будет онлайн-трансляция.
Так что не откладывайте, регистрируйтесь и зовите коллег — все подробности по ссылке.
Это #партнёрский пост
Вечером 27 октября вас ждут в офисе на Лесной, чтобы обсудить:
После докладов спикеры в формате круглого стола вместе с участниками обсудят, подходит ли Python для запуска больших нагруженных решений.
Для тех, кто не успевает вырваться из офиса или дома, будет онлайн-трансляция.
Так что не откладывайте, регистрируйтесь и зовите коллег — все подробности по ссылке.
Это #партнёрский пост
Please open Telegram to view this post
VIEW IN TELEGRAM