AI LAB | Лаборатория ИИ
1.87K subscribers
650 photos
441 videos
24 files
917 links
Лаборатория ИИ
Эксперименты и интересные материалы на тему ИИ в архитектурном проектировании и не только.

По всем вопросам 24/7
@arthiteca

Вопросы сотрудничества и соучастия
@j_fede
Download Telegram
#unrealneural
Посетил свой родной ВУЗ УГНТУ АСФ.
Это место все еще излучает вдохновение и вызывает желание изучать архитектуру как нечто большее, чем просто физические объекты 🔥
19👍115
Forwarded from iNeuro Lab IABS
ВСЕМ ПРИВЕТ!

Мы - лаборатория нейронного интеллекта Института перспективных исследований мозга МГУ.
Мы работаем уже несколько лет, и наконец готовы делиться с вами ☺️

🐁 Наша задача - разгадать механизмы интеллекта у животных и перенести эти принципы в искусственные системы.
Среди нас есть нейробиологи, специалисты по поведению животных, физики, программисты.

Мы занимаемся:
🟠исследованием нейронного кодирования поведения у животных
🟠механизмами долговременной памяти
🟠поиском нейронных коррелятов сознания
🟠разработкой новых подходов к анализу нейронных и поведенческих данных
🟠исследованиями процессов кодирования в искусственных нейронных сетях.

Наши инструменты есть на GitHub.

А об успехах и трудностях на нашем пути мы будем рассказывать в этом канале 🐀
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍21
#unrealneural #пытаюсьпонять
Почему мультимодальные LLM модели испытывают трудности с пространственным пониманием?

Это исследование показывает, что проблемы с пространственным восприятием у MLLM связаны не с дефицитом данных, а с архитектурой. Пространственная способность зависит от позиционных сигналов, получаемых от визуального кодировщика, поэтому необходим редизайн, например, внедрение функции точного таргетинга.
https://www.alphaxiv.org/abs/2509.02359v1
🤔5👍1
🤗
😁7
Media is too big
VIEW IN TELEGRAM
#unrealneural #врежимеожидания
MeshPad: генеративное создание 3D-сеток из эскизов

MeshPad — это подход для генерации 3D-сеток на основе эскизов, основанный на последовательности треугольников и модели Transformer. Редактирование выполняется через простые изменения в эскизе: удаление областей и добавление новой геометрии. Для ускорения используется стратегия спекулятивного прогнозирования, которая сокращает вычислительные затраты и позволяет завершать каждый шаг за несколько секунд. В экспериментах.
https://derkleineli.github.io/meshpad/
41🔥1
Media is too big
VIEW IN TELEGRAM
#unrealneural #врежимеожидания
PolyDiff: диффузионная модель для генерации 3D-сеток

PolyDiff — первая диффузионная модель, способная напрямую создавать реалистичные и разнообразные трёхмерные полигональные сетки. В отличие от методов, использующих неявные представления, PolyDiff работает непосредственно с сеточной структурой, учитывая как геометрию вершин, так и топологию граней. Модель рассматривает сетки как «треугольные супы», постепенно искажённые категориальным шумом, и обученный трансформер-шумоподавитель восстанавливает исходную структуру. На этапе генерации сетки формируются из полностью зашумлённых данных с последовательным устранением шума. Подход обеспечивает улучшение метрик качества: среднее снижение FID на 18,2 и JSD на 5,8 по сравнению с современными методами.
https://arxiv.org/abs/2312.11417
4👍21
This media is not supported in your browser
VIEW IN TELEGRAM
#unrealneural #ЛабораторияИИ #AILAB #Эксперименты
Вайб-проектирование

LLM для работы в Revit
Продолжаем эксперименты с Revit и LLM, которая по текстовым запросам моделирует внутри программы. Система тестируется под рабочими названиями Text2BIM, RevitMCP, RevitAI и Revit Copilot. Потенциал — автоматизация любых операций, включая оформление.
👍532🔥1
Forwarded from Data Secrets
Cursor на 28% улучшили фичу Tab с помощью RL

Для тех, кто не пользуется: Tab предсказывает, какое действие пользователь собирается сделать далее. Когда вы перемещаете курсор или начинаете писать какой-то код, Tab пытается понять, что вам нужно и, если она достаточно уверена в своем предсказании, то предлагает вам продолжение (чаще всего завершение кода).

Отличная фича, но часто предлагала шум. В общем, Cursor решили что-то с этим делать.

В других редакторах (например, в Copilot) подобную проблему пытались бороть обычными фильтрами: язык, были бы предыдущие предложения приняты или нет и тд.

Звучит в целом норм, но Cursor выбрали путь сложнее и интереснее, потому что они использовали RL с двумя сильными составляющими:

1. Сложная reward модель. Политика на каждом шаге предсказывает вероятности разных исходов + вероятность того, что предложение будет принято. Reward, исходя из этих вероятностей, поощряет принятые предложения и штрафует отклонённые. Например, если вероятность принятия ≥ 25%, accepted даёт +0.75, rejected — −0.25, если ничего не показывается – 0. Вот модель и решает, как ей лучше себя вести. Также в награде учитывается длина оффера, общее количество офферов и др.

2. On-policy data. То есть данные, на которых училась политика, собраны в реальной работе модели уже после её обновления. Получили новый чекпоинт -> задеплоили -> собрали данные (это занимает пару часов) -> учим дальше. Это чтобы не было distribution shift и градиент обновлялся правильно. Реализовать такое, конечно, мега запара.

Итог: в новой версии на 21% меньше предложений, но на 28% выше доля принятия.

Мало того, что это огромный скачок метрики, это еще и качественно другой результат: тут accept rate растет не за счет костыльной фильтрации шумных предсказаний, а за счет того, что сама модель стала более прагматичной и предлагает меньше ерунды.

Good job

cursor.com/blog/tab-rl
21👍1
#unrealneural
Китай представил первую в мире модель искусственного интеллекта, подобную мозгу, SpikingBrain1.0

До 100 раз быстрее, при этом обучение проводится на менее чем 2% обычно необходимых данных.

Разработанный для имитации работы человеческого мозга, он потребляет гораздо меньше энергии. Новая парадигма эффективности и аппаратной независимости.

Ознаменовывает значительный отход от текущих архитектур ИИ

В отличие от таких моделей, как GPT и LLaMA, которые используют механизмы внимания для параллельной обработки всех входных данных, SpikingBrain1.0 использует локализованное внимание, концентрируясь только на наиболее релевантном недавнем контексте.

Возможные области применения:

- Среды реального времени с низким энергопотреблением
- Автономные дроны и периферийные вычисления
- Носимые устройства, требующие эффективной обработки
- Сценарии, в которых потребление энергии имеет решающее значение

Этот проект является частью более масштабного научного исследования в области нейроморфных вычислений, целью которого является воспроизведение удивительной эффективности человеческого мозга, потребляющего всего около 20 Вт мощности.

https://arxiv.org/abs/2509.05276
🤯32🤔1🤡1
Беседин_А_П_,_Логинов_Е_В_Локк_о_времени.pdf
548 KB
Вышла статья Артема Беседина и Евгения Логинова о теории времени Джона Локка.

Проведен систематический анализ локковской концепции времени как идеи, формирующейся не априорно, а через рефлексию над последовательностью собственных мыслей. Предложено разделение между темпоральным «расстоянием», понятым натуралистически, как объективная длительность состояний человека, и идеей «продолжительности» как результатом рефлексии, что позволяет уточнить структуру идеи времени в эмпиристской эпистемологии Локка. Показано, что Локк критикует аристотелевское определение времени как меры движения, обосновывая автономию идеи времени от физического движения с опорой на субъективный опыт. Выявлено, что рассуждения об идее времени у Локка предполагает относительность времени и указывает на ограниченность человеческого познания, сближаясь в этом с кантовской эпистемологией. Также прослежены аргументы ранней критики (Серджент, Ли) и позиция Лейбница, что позволяет оценить границы и потенциал локковской теории. Показано, что локковская теория является переходом от аристотелических теорий времени к критической философии Канта с его субъективизацией времени.
👍32🔥2