SATOSHI • NOSTR • IA LLM ML • LINUX • BUSINESS | HODLER TUTORIAL
@tutorialbtc
1.24K
subscribers
15.8K
photos
2.09K
videos
244
files
23.4K
links
#DTV
Não Confie. Verifique.
#DYOR
FONTES & PESQUISA
tutorialbtc.npub.pro
📚
DESMISTIFICANDO
#P2P
Redes de Pagamentos
#Hold
Poupança
#Node
Soberania
#Nostr
AntiCensura
#Opsec
Segurança
#Empreender
Negócio
#IA
Prompt
#LINUX
OS
♟
#Matrix
'Corrida dos ratos'
Download Telegram
Join
SATOSHI • NOSTR • IA LLM ML • LINUX • BUSINESS | HODLER TUTORIAL
1.24K subscribers
SATOSHI • NOSTR • IA LLM ML • LINUX • BUSINESS | HODLER TUTORIAL
#Math
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Additive and multiplicative persistence
The additive persistence of a
number
is related to iteratively casting out nines. Multiplicative persistence is analogous but more interesting.
SATOSHI • NOSTR • IA LLM ML • LINUX • BUSINESS | HODLER TUTORIAL
#Math
#Number_systems
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Golden ratio base
numbers
Positional
number
systems typically have a integer base, but irrational and even complex bases are possible. The golden ratio was the first irrational base.
SATOSHI • NOSTR • IA LLM ML • LINUX • BUSINESS | HODLER TUTORIAL
#Math
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Golden powers revisited
Powers of the golden ratio are nearly integers. This post explains why. Also, these integers are the sum of two Fibonacci
numbers
.
SATOSHI • NOSTR • IA LLM ML • LINUX • BUSINESS | HODLER TUTORIAL
#Math
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Multiples and powers mod 1
For any x, the behavior of multiples of x mod 1 is easy to classify. The powers of x mod 1 are more interesting. We give examples of different behavior.
SATOSHI • NOSTR • IA LLM ML • LINUX • BUSINESS | HODLER TUTORIAL
#Math
#Mathematica
#Number_theory
source
John D. Cook | Applied Mathematics Consulting
Powers of 3 + √2
How to calculate large powers of 3 + √2 numerically with bc and symbolically with Mathematica. Conjecture regarding the integer and irrational parts.