Найден оптимальный алгоритм выявления «скрытых пружин» в устройстве общества.
На основе данных о коммуникации людей в любой социальной сети (онлайновой, типа ФБ, или офлайновой – в реальной жизни) можно выявить скрытую иерархическую структуру среди участников сетевых коммуникаций. Это делается путем анализа асимметричных моделей взаимодействий участников.
Подобные иерархии существуют в любых социальных группах: от птиц, приматов и слонов до людей. Все эти группы организованы в соответствии с иерархиями доминирования, определяющими модели повторяющихся взаимодействий, при которых доминирующие особи склонны утверждать себя над менее влиятельными членами групп.
Чем больше и сложнее сеть участников социальных взаимодействий, тем больше в нем скрытых иерархий, порою неведомых самим участникам коммуникаций.
Выявление архитектуры таких иерархий – критически важная задача для:
- понимания характера существующих и предсказания возникновения новых иерархий;
- увязки этих иерархий со «струями и течениями» социальных взаимодействий;
- оказания влияния на них в целях управления динамикой социальных коммуникаций.
Т.е. в наше время, - это важнейшая задача для социологов, политтехнологов, спецслужб и СМИ.
Поскольку задача столь важная, то для ее решения уже разработаны несколько подходов, в каждом из которых построено по несколько типов алгоритмических моделей и, соответственно, алгоритмов выявления иерархий.
Алгоритмов много, но их производительность и масштабирование до последнего времени оставляли желать лучшего.
Новая прорывная модель и алгоритм SpringRank навеяны элементарной физической аналогией – представить социальную сеть коммуникаций, как физическую систему, в которой между каждой парой участников натянута ориентированная пружина определенной длины и упругости.
Гениальная идея нового алгоритма - минимизировать общую энергию всех пружин системы. И поскольку эта задача оптимизации требует только линейной алгебры, ее можно решить для сетей с миллионами узлов и ребер за считанные секунды.
Натурные испытания алгоритма SpringRank на синтетических и реальных наборах данных (включая данные о поведении животных, найме преподавателей, сетях социальной поддержки и спортивных турнирах) показали замечательные результаты – алгоритм жутко эффективен, как по скорости, так и по масштабируемости.
Он также может выявлять и предсказывать появление ненаблюдаемых ребер в сети, - так сказать выявлять «скрытые пружины», влияющие на поведение общества.
Принципиальное преимущество SpringRank перед прежними алгоритмами в том, что
- старые алгоритмы, как правило, лишь «выявляют элиту» - дают высокие ранги небольшому числу важных узлов, что дает мало информации об иерархии узлов с более низким рейтингом;
- новый алгоритм выявляет всю многоуровневую иерархию, - и в том числе, латентную: неявную, скрытую и неочевидную.
Новый алгоритм, возможно, произведет революцию в т.н. «системах одобрения» (Systems of Endorsement ), в которых статус участников обусловлен престижем, репутацией или социальным положением.
К ним, в той или иной мере, относится почти все: от рекомендательных систем в Интернете, до социального устройства общества.
Подробней см. только что опубликованную работу «A physical model for efficient ranking in networks» http://advances.sciencemag.org/content/4/7/eaar8260
#СоциальныеСети #СоциальнаяИерархия #МоделиАлгоритмы
На основе данных о коммуникации людей в любой социальной сети (онлайновой, типа ФБ, или офлайновой – в реальной жизни) можно выявить скрытую иерархическую структуру среди участников сетевых коммуникаций. Это делается путем анализа асимметричных моделей взаимодействий участников.
Подобные иерархии существуют в любых социальных группах: от птиц, приматов и слонов до людей. Все эти группы организованы в соответствии с иерархиями доминирования, определяющими модели повторяющихся взаимодействий, при которых доминирующие особи склонны утверждать себя над менее влиятельными членами групп.
Чем больше и сложнее сеть участников социальных взаимодействий, тем больше в нем скрытых иерархий, порою неведомых самим участникам коммуникаций.
Выявление архитектуры таких иерархий – критически важная задача для:
- понимания характера существующих и предсказания возникновения новых иерархий;
- увязки этих иерархий со «струями и течениями» социальных взаимодействий;
- оказания влияния на них в целях управления динамикой социальных коммуникаций.
Т.е. в наше время, - это важнейшая задача для социологов, политтехнологов, спецслужб и СМИ.
Поскольку задача столь важная, то для ее решения уже разработаны несколько подходов, в каждом из которых построено по несколько типов алгоритмических моделей и, соответственно, алгоритмов выявления иерархий.
Алгоритмов много, но их производительность и масштабирование до последнего времени оставляли желать лучшего.
Новая прорывная модель и алгоритм SpringRank навеяны элементарной физической аналогией – представить социальную сеть коммуникаций, как физическую систему, в которой между каждой парой участников натянута ориентированная пружина определенной длины и упругости.
Гениальная идея нового алгоритма - минимизировать общую энергию всех пружин системы. И поскольку эта задача оптимизации требует только линейной алгебры, ее можно решить для сетей с миллионами узлов и ребер за считанные секунды.
Натурные испытания алгоритма SpringRank на синтетических и реальных наборах данных (включая данные о поведении животных, найме преподавателей, сетях социальной поддержки и спортивных турнирах) показали замечательные результаты – алгоритм жутко эффективен, как по скорости, так и по масштабируемости.
Он также может выявлять и предсказывать появление ненаблюдаемых ребер в сети, - так сказать выявлять «скрытые пружины», влияющие на поведение общества.
Принципиальное преимущество SpringRank перед прежними алгоритмами в том, что
- старые алгоритмы, как правило, лишь «выявляют элиту» - дают высокие ранги небольшому числу важных узлов, что дает мало информации об иерархии узлов с более низким рейтингом;
- новый алгоритм выявляет всю многоуровневую иерархию, - и в том числе, латентную: неявную, скрытую и неочевидную.
Новый алгоритм, возможно, произведет революцию в т.н. «системах одобрения» (Systems of Endorsement ), в которых статус участников обусловлен престижем, репутацией или социальным положением.
К ним, в той или иной мере, относится почти все: от рекомендательных систем в Интернете, до социального устройства общества.
Подробней см. только что опубликованную работу «A physical model for efficient ranking in networks» http://advances.sciencemag.org/content/4/7/eaar8260
#СоциальныеСети #СоциальнаяИерархия #МоделиАлгоритмы