Малоизвестное интересное
66K subscribers
103 photos
1 video
11 files
1.81K links
Авторский канал Сергея Карелова о самом важном на фронтирах науки и технологий, что кардинально изменит людей и общество в ближайшие 10 лет.




Рекламы, ВП и т.п. в канале нет.
Пишите на @karelovs
Download Telegram
ИИ – это не только мозг, но и тело

Игрушка-пружина Слинки никак не может считаться разумным существом, но её умение спускаться с лестницы – просто чудо механики.
Человек при спуске по лестнице, решает те же задачи управления механикой движения согласно геометрии ступеней, своим размерам и весу.
Что же управляет данным процессом - когнитивная обработка в мозге?
А как же это делает Слинки, у которой нет мозгов, а есть только «тело»?
Эти вопросы открывает перед нами фантастически интересную область «воплощенных агентов» (embodied agent) и «морфологических вычислений» (morphological computation), про которые в Рунете почти ничего.
А ведь эта область - штука сильнее, чем «Фауст» Гете 😊

Если совсем коротко - «воплощенный агент», это агент, обладающий «воплощенным интеллектом», т.е. интеллектом, возникающим при взаимодействии мозга, тела и окружающей среды, причем широкий ряд вычислений выполняется телом.
Биология дает множество примеров.
Возьмите проблему осторожного захвата тонкого, хрупкого предмета - такого, как высушенный цветок. Для робота это наисложнейшая по вычислениям задача. Процессоры должны точно вычислить местоположения захватов и силу их сжатия: слишком мало силы - и цветок ускользает; слишком много - и он превращается в пыль.
С человеческой рукой мозг не должен заморачиваться сложнейшим вычислительным процессом. Мягкая ткань в кончиках пальцев, обратная связь в суставах пальцев и трение сухожилий помогают мозгу решить проблему.
И главное – человек может это делать сходу - без какой-либо тренировки. Тогда как роботам, например, музыкантам), необходима длительная предварительная настройка и тренировка.

Другой пример - морфология глаза насекомого, способствующая обнаружению движения. У мозга просто не хватает быстродействия для супербыстрой реакции на движение в окружающем мире. И к вычислениям подключается тело. Для этого меняется строение глаз. Т.н. фасеточный глаз способен быстро обнаруживать движение, поскольку его временная инерционность в 15 раз меньше, чем у глаза человека.

Оба примера иллюстрируют, как вычисления, которые должен выполнять мозг, передаются на аутсорсинг телу. Этот аутсорсинг и привел к появлению в 2006 г. понятия «Морфологических вычислений», которое теперь является центральным понятием в области т.н. «воплощенного искусственного интеллекта».

Но есть проблема - не все физические процессы в теле можно рассматривать как вычисление в классическом смысле.
До сих пор считалось, чтоб решить этот вопрос можно, разбив морфологические процессы на: морфологическое вычисление, морфологический контроль, физические процессы поведения, и прочие физические процессы.
Однако, похоже, что это тупиковый подход. Нужна единая концепция «воплощенного искусственного интеллекта». Обычный «ИИ без тела» здесь не рулит.

Об этом только что говорили на совместном воркшопе Математического института Макса Планка и Института междисциплинарных исследований Санта-Фе.

Если тема вам интересна и стоит про это еще писать (или наоборот) – дайте знать.

#МорфологическиеВычисления #ВоплощенныйИнтеллект
Бунт машин может случиться раньше, чем предполагалось

Недавнее интервью руководителя разработок ИИ Facebook Яна ЛеКуна подтвердило, что мы еще очень далеки от создания т.н. общего ИИ, стоящего на одном уровне с человеческим.
Однако из этого Ян ЛеКун делает, возможно, ошибочный вывод, что нет опасности бунта машин в ближайшем или даже среднесрочном плане.
Ошибка может заключаться в увязке возможности бунта машин с наличием у них общего ИИ.

Это следует из новой работы Кейта Фарнсфорта «Может ли робот обладать свободой воли?» http://www.mdpi.com/1099-4300/19/5/237 , поскольку единственное, чем должна обладать машина для выхода из под контроля человека, - это свобода воли.

До сих пор дебаты Сингуляборцев и AIтеистов https://goo.gl/3CTV82 о потенциальной возможности бунта машин велись исключительно на философском уровне. Оно и понятно: аргументация сторон исключительно качественная, а логика у каждой стороны своя – субъективная и неформальная.
На таком фоне работа Кейта Фарнсфорта смотрится шедевром математической строгости и доказательности.
Автор не только впервые предложил точное, научно обоснованное определение свободы воли, но и сформулировал набор необходимых и достаточных условий наличия свободы воли у любых интеллектуальных агентов (как живых, так и искусственных - роботов).
Поэтому к выводам Фарнсфорта стоит отнестись весьма внимательно. А главный вывод прямо-таки сенсационен.
✔️ Робот способен проявлять свободу воли, даже не обладая сознанием.

До сих пор, при всем разнообразии мнений алармистов и реалистов ИИ, они сходилось в одном – современная наука пока не понимает, что из себя представляет сознание, и потому создание роботов, обладающих сознанием, пока невозможно.
Дальше же начинались спекуляции о том, как скоро это может произойти: через 10 лет, 20, 50 …100+

Вывод Фарнсфорта делает вопрос о наличии сознания, как условия для проявления роботом свободы воли, несущественным.
И как следствие, разговоры о рисках ИИ-апокалипсиса сразу становятся не гипотетическими.

Но тут (на счастье человечества) ограничителем выступает 2й вывод работы Фарнсфорта.
✔️ Обязательным условием наличия у робота свободы воли является то, что его самоопределение должно быть организационно закрытым, - т.е. иметь такую окружающую робота границу, что все его элементы, находящиеся внутри границы, обладали бы свойством организационной независимости от всего того, что лежит вне этой границы.
Интуитивно понятным и не исчерпывающим это замысловатое условие примером организационной закрытости агентов является их воплощенность – наличие тела. А как следствие, - наличие воплощенного интеллекта.
Разобраться с последним я уже обещал читателям канала (см. #ВоплощенныйИнтеллект). Но теперь, после работы Фарнсфорта, откладывать это в долгий ящик становится уже нельзя.

Резюмирую работу Фарнсфорта в контексте заявленной темы.
➡️ Бунт машин возможен задолго до обретения ими интеллекта, соизмеримого с человеческим, и это может быть связано с появлением у них тел, обеспечивающих организационную закрытость.
Как это может происходить на практике, прекрасно описано в одной из лучших вещей Станислава Лема «Маска» https://goo.gl/19ytS8
- - - - -
Удивительно! Казалось бы, чисто философское понятие свободы воли переводит дискуссию о возможностях ИИ-апокалипсиса из чисто философской плоскости в практическую.
Не зря философии принадлежит звание царицы всех наук – самой главной, но и самой сложной из них. Постичь мысли Декарта, Канта, Сартра, Мамардашвили и многих других выдающихся философских умов не просто.
Помочь может чтение специализированного канала @EduPhilosophy , где о важнейших и сложнейших философских понятиях говорится телеграмно-коротко и, по возможности, просто. Рекомендую.
#СвободаВоли #ВоплощенныйИнтеллект
Embodied Intelligence, как штурм Зимнего, когда-нибудь назовут революцией.
На сей раз, – революцией в ИИ.
О запуске 7 ноября 2017 стартапа Embodied Intelligence уже написали многие топовые ресурсы, а в течение этой недели напишут и остальные.
Но вот что поразительно, - все публикации отмечают лишь лежащие на поверхности детали:
— небольшая группа учёных покинула некоммерческую организацию Илона Маска OpenAI, занимающуюся вопросами ИИ, чтобы сформировать стартап Embodied Intelligence;
— этот стартап, за счет объединения технологий машинного обучения и виртуальной реальности (VR), обещает создать промышленную технологию самообучения роботов, расширяющую применение искусственного интеллекта в задачах робототехники.
При этом вообще никто не отметил главного – это смена парадигмы ИИ.
✔️ Новый стартап открывает новую эпоху робототехники, используя вместо традиционного «вычислительного подхода» (познание возникает в результате манипуляции символами в ходе работы некой программы) революционный «подход овеществления» – Embodiment (познание возникает в результате динамического взаимодействия мозга с телом, в ходе которого мозг управляет действиями тела, контролируя свое восприятие тела и окружающей среды в целях максимального приспособления к последней).

Т.е. при этом новом подходе:
1) вместо программирования роботов (оптимально запрограммировать робота вообще невозможно) их нужно научить учиться на собственных ошибках, как это делают биологические системы (от насекомых до людей);
2) такое обучение возможно лишь в ходе целенаправленных действий тела (тысяч и тысяч попыток, ошибок, неудач и постепенного самообучения робота оптимизировать свои действия);
3) успех этого обучения напрямую зависит от: (А) морфологии тела (как оно устроено) и (Б) эволюции робота (изменение его «мозга» в ходе миллионов действий с целью приспособиться к изменениям окружающей среды).

Результаты нового подхода обещают быть не менее впечатляющими для овеществленных интеллектуальных агентов (роботов), чем переход от программирования к самообучению для неовеществленных (например – программ, играющих в Го, которые тут же самообучились играть на недостижимом для человека уровне).

Воочию увидеть преимущества такого обучения можно здесь https://www.youtube.com/watch?v=xe-z4i3l-iQ начиная с 30й мин. (выступление главного идеолога Embodied Intelligence проф. Питера Аббеля)
В этом видео с 33:10 - :40 показаны неудачи передвижения роботов, запрограммированных традиционным подходом.
А с 34:30 показано, как за 2 тыс. попыток моделируемый робот учится бегать, не хуже спринтера-человека. А с 35:10 показано, что стоит поменять тело робота с человекоподобного на паука, как он учится вдвое быстрее и бегает вчетверо шустрее.
Также интересно с 35:50, как быстро робот сам учится вставать, имея цель - поднять голову как можно выше от земли.

Теперь Embodied Intelligence делает следующий шаг – помогает роботам быстрее учиться, копируя движения человека, делающего что-то в виртуальной реальности. Последняя нужна в качестве общей операционной среди человека и робота.
Как это делается подробно показано на этом видео https://www.youtube.com/watch?v=rEQ8CGLV0o0 и описано в сопровождающей статье https://arxiv.org/pdf/1710.04615.pdf

Подробное описание нового революционного подхода Embodiment (с источниками и обучающими материалами) я скоро подготовлю для интересующихся.
А в завершение лишь приведу метафору Лучано Флориди для непреодолимого ограничения традиционного – вычислительного ИИ подхода:
«Восхождение на вершину дерева - это не маленький шаг к Луне; это конец путешествия».
Революционный новый Embodiment подход – это смена стратегии: вместо влезания на дерево все выше и выше - попытка построить ракету.
#ВоплощенныйИнтеллект
Гипотеза, что мир - это галлюцинация, что воспринимаемая нами реальность – это смоделированная мозгом конструкция, - в последние годы находит всё более серьёзных и влиятельных сторонников.
Опровержение подкралось, откуда совсем не ждали – агентное моделирование воплощенных взаимодействий.
Моделирование показало, что взаимодействие индивидов — это не просто генератор дополнительных входных данных для каждого из них. Оказывается, взаимодействие само по себе способно увеличивать нейронную сложность каждого из взаимодействующих индивидов.
А раз так, значит для неограниченного развития нейронной сложности в ходе эволюции рода Homo, нашим предкам были нужны «другие», в ходе социальных взаимодействий с которыми и росла нейронная сложность мозга всех участников.
И этими «другими» не могли быть собственные галлюцинации Homo, просто по причине их невоплощенности - отсутствия тела, способного взаимодействовать со средой и другими агентами.
Истина оказалась столь же проста и фундаментальна, как в неписанном законе следователей – нет тела, нет дела.
Только у эволюции Homo этот закон звучит чуть иначе – нет тела, нет возможности превзойти заданный предел когнитивной сложности.

Об этом удивительном открытии мой новый пост на 5 мин.
- на Medium https://goo.gl/W8QJgM
- на Яндекс Дзен https://clck.ru/FSoXQ
#Энактивизм #ВоплощенныйИнтеллект
Создан первый воплощенный в дроне ИИ, способный справиться с двумя НЛО.
Его преимущество – знание собственного несовершенства.

Если вам в лицо летит мяч – вы автоматически уклоняетесь, делая это не задумываясь. За доли секунды встроенный в вас эволюцией нейрокод просчитывает варианты уклонений, выбирает лучший и применяет его, не спрося вашего на то разрешения. Только так можно выжить в нашем мире. Эволюция это знает и умеет делать живых существ, способных делать такое запросто.
Но чтоб сделать такое запросто и очень-очень быстро, мало иметь быстрый вычислитель (в голове или процессоре). Еще нужно:
1) уметь распознавать не сами объекты, а их движение (так делает сетчатка созданного природой уникального прибора - глаза);
2) знать «тактико-технические» характеристики своего тела – что оно может делать и как быстро (такой ИИ называется воплощенный - Embodied AI – и это одна из моих любимых тем).
Посмотрите, насколько эффективно подобное делают птицы. А ведь это многократно замедленное видео. В реальности они движутся столь быстро, что вы бы этого просто не поняли.

Первый в мире «Воплощенный ИИ», осознающий свое несовершенство, - это EVDodge - дрон, оснащенный:
- «камерой событий» (event camera), способной выявлять вблизи себя НЛО (независимые летающие объекты - Independently Moving Objects);
- системой самооценки своих движений - estimating self-movement.
Этот дрон умеет уклоняться одновременно от двух НЛО и «понимает» пределы своих физических возможностей (без чего любой расчет сценариев уклонения делать бессмысленно).
Подобно отдельным нейронам тканей человеческого глаза, ячейки датчика «камеры событий» регистрируют только изменения в картине, которую они наблюдают. Такой подход позволяет избавиться от большого количества избыточных статических данных, концентрируясь только на происходящих изменениях. Такой тип камер идеален для роботов при решении задачи быстрого маневрирования, поскольку тут важнее не врезаться во что-нибудь, а не разбираться, что именно это было. Ведь и мы не распознаем что именно летит нам в физию – мяч, бутылка, плюшевый мишка – какая разница! Отклоняйся и будешь цел.

Для выбора оптимального сценария уклонения выполняется сопоставление летательных возможностей НЛО и собственных летательных возможностей дрона (он их знает). Если последние хуже, чем у НЛО, ничего не поможет – дрон получает удар. А наш нейрокод в таких случаях заставляет нас закрыть глаза – хотя бы зрение сохранить, если удар неизбежен.

В итоге эффективность уклонений дрона составляет до 70% при объектах неизвестной формы и низкой освещенности. Ну а элегантности уклонений дрона до колибри еще далеко.
Оцените сами.
Популярно по-русски.
Все детали описания, как спроектирован и как работает (англ.)
#БПЛА #ВоплощенныйИнтеллект
Пара интересных соображений, заслуживающих вашего внимания.

1. Современный ИИ – на самом деле, ИН - Искусственный Неинтеллект

Интеллекты могут быть чрезвычайно разные. А наш интеллект – это всего лишь материализовавшаяся возможность. Одна из многих.
Но тот ИИ, что создали люди, - это более чем странное творение, почему-то тоже называемое интеллект.
Надо было иметь креативность уровня Бога, чтобы придумать и создать такое - ведь это даже не существо, не дух и не призрак.
Это творение:
• способно к бесконечному совершенствованию при решении одной конкретной задачи единственным способом – поиском закономерностей в морях данных;
• при этом будучи бестелесным и бесчувственным, обитая в беспорядочном, никак не структурированном пространстве, лишенном хоть каких-то смыслов.

Короче, если задуматься, это не интеллект вовсе, а какая-то извращенная пародия на него, созданная как будто для фильмов ужаса.

2. Возможно, галлюцинации - это неконтролируемое восприятие.

Почти общепринято, что восприятие - это разновидность контролируемой галлюцинации. Вы представляете мир структурированным, поскольку ожидаете, что он структурированный. А сенсорная информация здесь действует как обратная связь. Она позволяет вам исправлять и уточнять ожидания.
Но ведь прежде запуска обратной связи, наши ожидания нужно создать. Значит ли это, что восприятие - это контролируемая галлюцинация?
А что если наоборот: галлюцинация - своего рода неконтролируемое восприятие?
Байесовский мозг, предиктивная обработка, иерархическое предиктивное кодирование – все это названия одной и той же теории предсказаний, в которой наш опыт возникает на смещающейся границе между сенсорными данными и нисходящим прогнозом или ожиданием.
По этой теории масса литературы. А великий Карл Фристон сумел даже математизировать ее и объяснить, как устроена жизнь, состоящая из предсказаний, последовательных действий и обратной связи.
Но в этой обратной связи:
- помимо внешних чувств, которые мы принимаем от зрения, слуха и т. д.,
- и чувств движения нашего тела, которые мы используем для предсказания его перемещения,
существуют еще и внутренние чувства, поступающие от внутренних органов.
И эти внутренние чувства - часть нашего сознательного восприятия мира.

Т.о., даже если мы создадим ИИ:
- способный не только действовать в окружающем мире,
- но и способный воспринимать свой индивидуальный образ мира с помощью внешних чувств,
У него не будет внутренних чувств. А значит, и сознания.

Подробней в увлекательной беседе Edge.org с философом Энди Кларком.


О переориентации от Искусственного Неинтеллекта к Неразумному Интеллекту (как это рекомендовал еще Станислав Лем) читайте в моем посте

Желающим погрузиться в мир самых экзотических галлюцинаций - «Чувство справедливости – всего лишь галлюцинация».

#ИИ #ВоплощенныйИнтеллект #Сознание
Многие ошибочно думают, что ключевыми особенностями интеллекта человека являются его биологическая основа и эволюционный путь, создавший за миллионы лет физическую основу интеллекта: его HW – мозг и SW –нейрохимическую прошивку.
Ошибочно считается, что именно био-основа и пройденный эволюционный путь:
- принципиально отличают наш интеллект от искусственного (ИИ);
- определяют все имманентные преимущества «естественного интеллекта» над ИИ, равно как и все его недостатки, по отношению к ИИ.
К сожалению, такая трактовка сути интеллекта человека – не просто упрощение. Это огромная ошибка, определившая выбор мейнстримного пути развития ИИ, превратив этот путь в кривые глухие окольные тропы…

Ну а как на самом деле, - в моем новом посте на 4 мин. чтения:
- на Medium http://bit.ly/2xRjo9C
- на Яндекс Дзен https://clck.ru/H59Ke
#ВоплощенныйИнтеллект #КоллективныйИнтеллект #Эусоциальность
​​Маркетинг и пиар мейнстримных исследований и разработок в области ИИ позиционирует их, как последовательность прогрессирующих шагов: от простых приложений для смартфонов и умных колонок к созданию человекоподобного ИИ общего назначения.
Но «залезть на вершину дерева — это не маленький шаг к Луне; это конец путешествия»
Так Лучано Флориди едко сформулировал метафору непреодолимого ограничения мейнстримного подхода к ИИ. Нужна смена стратегии:
вместо попыток залезть на вершину дерева, нужно пытаться построить ракету.

Идея воплощенного интеллекта (продвигаемая под лозунгом «мозг не для того, чтобы думать») начинает пробиваться в мейнстрим. И хотя эта идея не нова, но ее новые интерпретации (на стыке теории сконструированных эмоций, активного вывода и прогнозирующего разума) на наших глазах готовят революцию в междисциплинарных биологических, когнитивных и социальных знаниях.

Мною эта тема, запущенная постом «ИИ — это не только мозг, но и тело», пропагандируется уже 4-й год. Еще в ноябре 2017 я писал,
«Embodied Intelligence, как штурм Зимнего, когда-нибудь назовут революцией в ИИ».

И похоже, спустя 4 года, мы, наконец, подошли к революционной ситуации.
По мере выхода темы воплощенного интеллекта в мейнстрим, интересующимся читателям нужен систематический, структурированный «популярный справочник» по ней. Коего пока на свете нет.

Но Дерик Боундс — один из самых уважаемых мною интеллектуалов, — взялся соорудить такой «популярный справочник» путем переложения и переосмысления книги Лизы Барретт «Как рождаются эмоции».

Подглядывать за подглядывающим — особенно притягательное занятие на грани извращения. Переложение переложения научно-популярный текстов сродни этому. Но я все же решился на это, ибо, если не я, то кот 😊.

Дерик Боундс пересказывает и редактирует те из основных положений книги Барретт, с которыми он согласен (при этом всячески призывая вас прочесть книгу, чтобы найти там огромное количество доказательств). Дерик решил написать такое переложение книги Барретт, т.к. на его (да и мой) вкус, книге не хватает системности и структурированности (такова оказалась плата за простоту и стиль, ориентированные на самый широкий круг читателей).

Я же буду выступать в роли «подглядывающего за подглядывающим» в надежде, что, как и для приготовления виски, «двойная перегонка» пойдет на пользу конечному продукту.

Продолжение поста (еще 3 мин):
- на Medium http://bit.do/fLuXL
- на Яндекс Дзен https://clck.ru/SCvGf
#воплощенныйинтеллект
В области ИИ мы находимся на технологическом уровне Древней Греции.
Там умели создавать сложные красивые сооружения и мудрёные философские теории. Однако, рассчитать траекторию брошенного камня (не говоря уж о траектории движения Земли) не смог бы и сам Аристотель. Ведь чтобы рассчитать эти траектории нужно знать конкретные математические формулы, опирающиеся на законы Ньютона и Кеплера.

Вот и сегодня наука не располагает математически описанными законами, в соответствии с которыми работает биологический интеллект. И потому сделать умную колонку с виртуальным голосовым помощником люди сегодня могут. А ИИ, подобный даже не человеческому, а хотя бы мышиному, - увы нет. Формул не знаем.


Но почему? Что мешает науке описать математику работы мозга?

Проблема в том, что наш интеллект – результат сотен миллионов лет эволюции, которая создавала его с одной единственной целью – повысить шансы физического тела на выживание и воспроизводство.

Т.е. биологический интеллект всегда воплощен в конкретное тело и нужен для управления разумным поведением, подстраивая его под морфологию тела и адаптируя к окружающей среде. Интеллект мыши подстроен под тело мыши и среду обитания мыши. Интеллект дельфина – под тело и среду дельфина. А человека – под тело и среду человека.

Это неразрывная триада: среда, тело, интеллект. И невозможно математически описать работу последнего в отрыве от первого и второго.
Следовательно, понять математику функционирования биологического интеллекта можно, только изучая динамику приспособления тела к условиям окружающей среды.

Но у современного ИИ все не так.
Он не воплощен, а бестелесен (у алгоритмов машинного обучения нет физического тела, которому нужно выживать и воспроизводиться). И потому ИИ, строго говоря, некорректно сравнивать с биологическим интеллектом. Это все равно, что сравнивать кошку с мышеловкой. Да, - извести мышь можно с помощью и того, и другого. Но на этом сходства заканчиваются.

Попытки преодолеть бестелесность ИИ делаются самые разнообразные.
Недавно я писал о разработке компанией DeepMind концепции разумной материи, позволяющей избежать проблемы отсутствия у интеллекта тела. Однако, эта концепция, типа «разумного океана» из романа «Солярис», уж слишком неземная, - за всю земную эволюцию здесь так и не появилось ни одно бестелесное разумное существо. И потому традиционный подход – среда, тело, интеллект, - видится всё же перспективней.

Новая система, разработанная в Стэнфордском университете, названа Deep Evolutional Reinforcement Learning – DERL – глубокое эволюционной обучение с подкреплением. Это новая вычислительная структуру, которая может решать сложные задачи локомоции и манипуляций в сложных средах для агентов различных морфологий, используя только низкоуровневую сенсорную информацию. Используя DERL, можно изучать следующие две взаимосвязи между сложностью окружающей среды, морфологическим интеллектом и обучаемостью агента управлять свои телом.
1) Сложность окружающей среды способствует развитию морфологического интеллекта, количественно определяемого способностью морфологии облегчать решение новых задач.
2) Эволюция быстро выбирает морфологии, которые учатся быстрее, тем самым позволяя поведению, усвоенному при жизни предков, передаваться для использования в жизни их потомков.

Эксперименты с DERL (см. схему) позволят на практике увидеть работу эффекта Болдуина - поведение, имеющее решающее значение для выживания, часто становится «запрограммированным» в геноме, чтобы гарантировать, что оно не потеряно.
Но главное, можно будет исследовать возникновение морфологического интеллекта через эволюцию морфологий, ведущих к более физически стабильному и энергоэффективному поведению, облегчающему обучение и контроль.

Дополнительные детали по теме смотрите в канале по тегу
#ВоплощенныйИнтеллект
​​Мой сегодняшний почти часовой рассказ об эволюции разума в программе «Искусство интеллекта» у Саркиса Григоряна.
• Почему залезть на вершину дерева — это не маленький шаг к Луне, а конец путешествия.
• Почему мозг не нужен, если нет тела.
• Почему кошка и мышеловка совсем не одно и то же.
• Что прячется за тремя великими загадками: сознание, разум, интеллект.
• Три ключевых теории, способные эти загадки разгадать (теории Лизы Барретт, Марка Солмса и Карла Фристона).
• Как из четырех стихий (Вода, Воздух, Земля и Огонь) получилось четыре земных Разума, и почему «Пятым элементом» разума может стать не Любовь, а Огонь.
https://www.youtube.com/watch?v=Rc75FvGlwJ4
#Разум #ИнойИнтеллект #ВоплощенныйИнтеллект #Сознание #ИИ
​​Современный ИИ – это игрушечная собачка.
Почему ИИ сложнее, чем мы думаем

ИИ не знает, что снеговики не бегают, - таков печальный итог 63 лет развития ИИ
Машинное обучение - это современная алхимия
Сильный ИИ – не хайп, а фейк, и его невозможно создать
Если смешать (но не взбалтывать) эти три моих поста, украсив полученный коктейль прекрасным научным слогом и авторитетом профессора компьютерных наук ряда университетов Мелани Митчелл, - получится отличная статья «Четыре заблуждения об ИИ. Исследователи ИИ обманывают себя, утверждая будто интеллект человеческого уровня вполне достижим. И вот почему».

1. Триумфализм (ИИ лучше нас в шахматах, го, различных компьютерных играх, некоторых типах распознавания изображений и т.д.). На самом деле, «всё это подобно утверждению, будто первая забравшаяся на дерево обезьяна продвигалась к будущей высадке на Луну. Но на самом деле, на этом пути возникает множество неожиданных препятствий».
2. «Парадокс Маравека» (сложные для людей действия - игра в шахматы, перевод языков и высокие результаты тестов интеллекта - относительно просты для компьютеров; но то, что нам кажется легким, - подниматься по лестнице, болтать и избегать простых препятствий - сложно для компьютеров).
3. Выдавание желаемого за действительное (все успехи ИИ в узких областях, пока непереносимы на общие человеческие способности).
4. Ошибочное предположение, будто интеллект полностью находится в мозге, и что он в принципе может быть развоплощенным.

Про п. 4 (про который я пишу более всего) Митчелл очень четко текстует.
«Большая часть нашего интеллекта передана на внешний подряд в человеческую форму. Например, если вы прыгаете со стены, нелинейные свойства ваших мышц, сухожилий и связок поглощают удар, а ваш мозг не участвует в координации движения. Напротив, подобный прыжок робота часто требует точного измерения углов конечностей и суставов, в то время как мощные процессоры определяют, как исполнительные механизмы должны вести себя, чтобы поглотить удар… В некотором смысле, все эти вычисления выполняются морфологией наших тел, которая сама по себе является результатом миллиардов лет эволюции (еще один алгоритмическим процессом)».

Эту важнейшую фразу позволю себе проиллюстрировать простым и понятным примером – сальто, выполняемое
игрушечной собачкой,
роботом Вoston Вynamics
человеком.

Робот в искусстве сальто (и вычислительных процессах, стоящих за этим искусством) гораздо ближе игрушке-собачке, чем к человеку.

И это 100%но переносимо на все современные практические попытки реализации сильного ИИ.

Статья Митчелл:
- популярно
- научно
#СильныйИИ #ВоплощенныйИнтеллект
Накануне Нового года особенно приятно писать не только о малоизвестном интересном, но и о чем-то абсолютно прорывном и сулящем буквально каждому интригующие перспективы.

Всю жизнь я тужил, что так и не научился метко бросать мяч в кольцо, да и на теннисном корте точностью не отличался.
Казалось бы, в чем проблема – точно повторить то же самое движение, что как-то уже получалось при удачном броске в кольцо или при ударе по мячу на корте?
Но увы, все было без вариантов. Как будто в памяти немедленно затирались команды мозга мышцам, приведшие к успешной попытке.

И вот появляется новая теория (среди авторов которой сам Дэн Уолперт), которая, по идее, сможет помочь восстанавливать затертые в памяти команды мышцам.

Да что там восстановление памяти!
Новая теория, возможно, станет единой универсальной моделью познавательных способностей, позволяющей понять, как в материальном мозге рождаются нематериальные сознание и мышление.

В посте много видео (2 художественных фильма и 3 часовых лекции). Так что, если в предновогодней горячке время не найдете, отложите на длинные выходные – оно того стоит.

Мой новый пост (8 мин чтения без учета кучи видео)
- на Medium https://bit.ly/3z8TIo6
- на Яндекс Дзен https://clck.ru/aeEY6

#ВоплощенныйИнтеллект #Разум #Движение #Память