Новая модель власти над умами
Разработана и протестирована модель распространения информационных каскадов, позволяющих меньшинству эффективно изменять преференции большинства при выборе конкурирующих продуктов, услуг, идей, кандидатов и т.п. Т.е. по сути, - управлять выбором масс в маркетинге, распространении новых идей или при избирательных кампаниях исключительно средствами сетевых технологий.
Новая модель показала, - сетевое меньшинство (реальные люди или боты) вполне способно убедить большинство в достоверности фейковой новости или внедрить в массовое сознание альтернативный доминирующему идеологический мем.
Подробней об этом я написал здесь https://goo.gl/98sVVn - 3 мин. чтения.
А таково резюме.
- - - - -
Мощность и действенность цифрового влияния напрямую зависит от возникновения каскада - вирусного эффекта эпидемического распространения контента по значительной части сети.
Исследование «Хипстеры в сетях: как меньшинство может превратиться в большинство противников истеблишмента» https://arxiv.org/abs/1707.07187 позволяет понять, как при возникновении каскада большинство меняет своё предпочтение (убеждение, точку зрения и т.д.) на альтернативное, индуцированное меньшинством.
Или, попросту говоря, - вместо выбираемого большинством продукта Х, склоняется к покупке другого продукта Y, рекомендуемого меньшинством.
Исследование показало:
1. Для переубеждения большинства, меньшинство может не превышать 10% (для высококластеризованной сети класса Facebook – до 20%). Таковым может быть число контролируемых ботами индивидуальных социо-медийных эккаунтов, создаваемых в целях переубеждения большинства - при проведении выборов, для победы над продуктом конкурента и т.д.
2. Важную роль для превращения идеи/предпочтения меньшинства в таковую для большинства играет временная задержка между получением человеком информации из своего локального и глобального окружения (например, своей ленты в Facebook и сообщений СМИ).
Особенно важно, что результаты этого исследования могут использоваться, как лидерами рынка или находящимся у власти истеблишментом, так и конкурентами или оппозицией.
Вопрос только, - какая из сторон быстрее освоит новую технологию каскадного изменения мнений большинства.
#Каскады #СоциальныеСети
Разработана и протестирована модель распространения информационных каскадов, позволяющих меньшинству эффективно изменять преференции большинства при выборе конкурирующих продуктов, услуг, идей, кандидатов и т.п. Т.е. по сути, - управлять выбором масс в маркетинге, распространении новых идей или при избирательных кампаниях исключительно средствами сетевых технологий.
Новая модель показала, - сетевое меньшинство (реальные люди или боты) вполне способно убедить большинство в достоверности фейковой новости или внедрить в массовое сознание альтернативный доминирующему идеологический мем.
Подробней об этом я написал здесь https://goo.gl/98sVVn - 3 мин. чтения.
А таково резюме.
- - - - -
Мощность и действенность цифрового влияния напрямую зависит от возникновения каскада - вирусного эффекта эпидемического распространения контента по значительной части сети.
Исследование «Хипстеры в сетях: как меньшинство может превратиться в большинство противников истеблишмента» https://arxiv.org/abs/1707.07187 позволяет понять, как при возникновении каскада большинство меняет своё предпочтение (убеждение, точку зрения и т.д.) на альтернативное, индуцированное меньшинством.
Или, попросту говоря, - вместо выбираемого большинством продукта Х, склоняется к покупке другого продукта Y, рекомендуемого меньшинством.
Исследование показало:
1. Для переубеждения большинства, меньшинство может не превышать 10% (для высококластеризованной сети класса Facebook – до 20%). Таковым может быть число контролируемых ботами индивидуальных социо-медийных эккаунтов, создаваемых в целях переубеждения большинства - при проведении выборов, для победы над продуктом конкурента и т.д.
2. Важную роль для превращения идеи/предпочтения меньшинства в таковую для большинства играет временная задержка между получением человеком информации из своего локального и глобального окружения (например, своей ленты в Facebook и сообщений СМИ).
Особенно важно, что результаты этого исследования могут использоваться, как лидерами рынка или находящимся у власти истеблишментом, так и конкурентами или оппозицией.
Вопрос только, - какая из сторон быстрее освоит новую технологию каскадного изменения мнений большинства.
#Каскады #СоциальныеСети
Medium
Новая модель власти над умами
Разработана и протестирована модель распространения информационных каскадов, позволяющих меньшинству эффективно изменять преференции…
Эволюция мема.
На примере 2х кейсов - влияние на выборы и провокация волнений в США.
1й кейс – эволюция мема, спровоцировавшая вооруженные волнения в США, - показан в только что закончившемся 7ом сезоне сериала Homeland (Родина). Этот пока еще не материализовавшийся кейс основан на вполне реальном 2ом кейсе – уже материализовавшемся на последних президентских выборах в США.
2й кейс – влияние на президентские выборы путем вброса мемов, эволюционирующих при активной поддержке соцботов, детально разобран в совместном отчете USC Dept. Of Political Science и USC Information Sciences Institute. Это исследование показало 30ти кратное превосходство в эффективности влияния соцботов, работавших на поддержку Трампа и названных в отчете «Русские тролли».
Поскольку каждый из желающих может сам и фильм посмотреть, и отчет прочесть, я лишь попробую дать резюме обоих кейсов в виде а ля комикс – в картинках с пояснениями на 4 мин. чтения
https://goo.gl/xbvtsB
#Соцботы #Выборы #СоциальноеЗаражение #ФейковыеНовости #Каскады
На примере 2х кейсов - влияние на выборы и провокация волнений в США.
1й кейс – эволюция мема, спровоцировавшая вооруженные волнения в США, - показан в только что закончившемся 7ом сезоне сериала Homeland (Родина). Этот пока еще не материализовавшийся кейс основан на вполне реальном 2ом кейсе – уже материализовавшемся на последних президентских выборах в США.
2й кейс – влияние на президентские выборы путем вброса мемов, эволюционирующих при активной поддержке соцботов, детально разобран в совместном отчете USC Dept. Of Political Science и USC Information Sciences Institute. Это исследование показало 30ти кратное превосходство в эффективности влияния соцботов, работавших на поддержку Трампа и названных в отчете «Русские тролли».
Поскольку каждый из желающих может сам и фильм посмотреть, и отчет прочесть, я лишь попробую дать резюме обоих кейсов в виде а ля комикс – в картинках с пояснениями на 4 мин. чтения
https://goo.gl/xbvtsB
#Соцботы #Выборы #СоциальноеЗаражение #ФейковыеНовости #Каскады
Medium
Эволюция мема
На примере 2х кейсов — влияние на выборы и провокация волнений в США
СОИ для Интернета уже создана.
Технологии для создания СОИ (Стратегической Оборонной Инициативы США - широкомасштабной системы противоракетной обороны с элементами космического базирования, исключающей или ограничивающей возможное поражение наземных и морских целей из космоса) разрабатывают уже 35 лет. Но так пока и не удалось разработать технологию, способную выполнять поставленную перед СОИ цель.
Интернет технологии развиваются на 2 порядка быстрее. И потому технология обнаружения и противодействия вражескому вторжению в Интернете была разработана в США всего за несколько месяцев после истории, которую там называют «Вторжение русских троллей» (влияние на выборы соцботов).
Про эту историю я писал уже не раз. Но, в основном, «беллетристику», живописующую сам факт вторжения, - как оно видится глазами исследователей и ЦРУшников.
Не удивительно поэтому, что не мало моих читателей, по-прежнему, продолжают считать эту историю надуманной. Где, мол, технико-тактические доказательства:
— как вторжение производилось?
— какие результаты имело?
— и главное, - если это работает, то как этому можно технологически противостоять?
Конкретные профессиональные ответы на эти 3 вопроса изложены в прекрасном посте Уильяма Лиона - Developer Relations Engineer в Neo4j и глава Neo4j Data Journalism Accelerator Program – «The Story behind Russian Twitter Trolls: How They Got Away with Looking Human – and How to Catch Them in the Future» https://goo.gl/b752YF (на 5 мин чтения).
Для желающих разобраться со всеми технологическими деталями в посте приведены необходимые гиперссылки на материалы технического расследования и даже самой базы данных (вплоть до таблицы «поименного» анализа самых крутых троллей https://goo.gl/aXHH3o). Эти материалы, как отмечает Лион, стали тех-обоснованием обвинительного акта, выдвинутого прокурором Мюллером.
Так что самые технически продвинутые читатели могут все самостоятельно проверить, разобраться и понять.
Ну а для не столь продвинутых – резюме.
✔️ Технология противодействия вторжению соцботов в США разработана.
✔️ Ее глобальное развертывание на национальном уровне – подъемная, хотя и не простая задача.
✔️ По известному принципу «противостояния щита и меча», теперь ход снова за мечом.
#Соцботы #Каскады
Технологии для создания СОИ (Стратегической Оборонной Инициативы США - широкомасштабной системы противоракетной обороны с элементами космического базирования, исключающей или ограничивающей возможное поражение наземных и морских целей из космоса) разрабатывают уже 35 лет. Но так пока и не удалось разработать технологию, способную выполнять поставленную перед СОИ цель.
Интернет технологии развиваются на 2 порядка быстрее. И потому технология обнаружения и противодействия вражескому вторжению в Интернете была разработана в США всего за несколько месяцев после истории, которую там называют «Вторжение русских троллей» (влияние на выборы соцботов).
Про эту историю я писал уже не раз. Но, в основном, «беллетристику», живописующую сам факт вторжения, - как оно видится глазами исследователей и ЦРУшников.
Не удивительно поэтому, что не мало моих читателей, по-прежнему, продолжают считать эту историю надуманной. Где, мол, технико-тактические доказательства:
— как вторжение производилось?
— какие результаты имело?
— и главное, - если это работает, то как этому можно технологически противостоять?
Конкретные профессиональные ответы на эти 3 вопроса изложены в прекрасном посте Уильяма Лиона - Developer Relations Engineer в Neo4j и глава Neo4j Data Journalism Accelerator Program – «The Story behind Russian Twitter Trolls: How They Got Away with Looking Human – and How to Catch Them in the Future» https://goo.gl/b752YF (на 5 мин чтения).
Для желающих разобраться со всеми технологическими деталями в посте приведены необходимые гиперссылки на материалы технического расследования и даже самой базы данных (вплоть до таблицы «поименного» анализа самых крутых троллей https://goo.gl/aXHH3o). Эти материалы, как отмечает Лион, стали тех-обоснованием обвинительного акта, выдвинутого прокурором Мюллером.
Так что самые технически продвинутые читатели могут все самостоятельно проверить, разобраться и понять.
Ну а для не столь продвинутых – резюме.
✔️ Технология противодействия вторжению соцботов в США разработана.
✔️ Ее глобальное развертывание на национальном уровне – подъемная, хотя и не простая задача.
✔️ По известному принципу «противостояния щита и меча», теперь ход снова за мечом.
#Соцботы #Каскады
Graph Database & Analytics
The Story behind Russian Twitter Trolls: How They Got Away with Looking Human – and How to Catch Them in the Future - Graph Database…
Discover the story behind the story of the Russian trolls who used Twitter and other social media in an attempt to influence the U.S. presidential election, including how journalists used the Neo4j graph database to detect and map out the troll networks simultaneously…
Техно-методами наступающую тьму фейковой инфореальности не остановить.
Это 1й пункт звучащего приговором резюме цикла новых исследований.
2й и 3й пункты этого резюме подстать.
2) Фейковая инфореальность имеет высокие шансы стать доминирующей уже в ближайшее десятилетие, что будет иметь радикальные последствия для политики, культуры и образования.
3) Ключевой и пока что непреодолимой силой, толкающей мир в новые темные времена, является своеобразная цепная реакция, в основе которой:
✔️ многочисленные “тараканы” в наших головах — наличие у большинства из нас разнообразных когнитивных искажений и предубеждений на подсознательном уровне;
✔️ многократный рост размеров этих «тараканов» в результате «облучения сетевой заразой» — искусственно порождаемыми вирусными мемами.
Поэтому, если мы хотим выжить в этой кислотной инфосреде и при этом не выжить из ума, погрузившись в фейковую инфореальность, нам необходимо:
— знать и понимать механику, порождающую фейковую инфореальность;
— найти и освоить инструментарий для борьбы с этой механикой, — типа осинового кола или серебряных пуль для изведения вампиров.
Об этом мой новый пост https://goo.gl/H8XkZD
#Соцботы #ФейковыеНовости #Каскады #СоциальноеЗаражение
Это 1й пункт звучащего приговором резюме цикла новых исследований.
2й и 3й пункты этого резюме подстать.
2) Фейковая инфореальность имеет высокие шансы стать доминирующей уже в ближайшее десятилетие, что будет иметь радикальные последствия для политики, культуры и образования.
3) Ключевой и пока что непреодолимой силой, толкающей мир в новые темные времена, является своеобразная цепная реакция, в основе которой:
✔️ многочисленные “тараканы” в наших головах — наличие у большинства из нас разнообразных когнитивных искажений и предубеждений на подсознательном уровне;
✔️ многократный рост размеров этих «тараканов» в результате «облучения сетевой заразой» — искусственно порождаемыми вирусными мемами.
Поэтому, если мы хотим выжить в этой кислотной инфосреде и при этом не выжить из ума, погрузившись в фейковую инфореальность, нам необходимо:
— знать и понимать механику, порождающую фейковую инфореальность;
— найти и освоить инструментарий для борьбы с этой механикой, — типа осинового кола или серебряных пуль для изведения вампиров.
Об этом мой новый пост https://goo.gl/H8XkZD
#Соцботы #ФейковыеНовости #Каскады #СоциальноеЗаражение
Medium
Техно-методами наступающую тьму фейковой инфореальности не остановить
— Мадам, а не хотите кофе? —
Известностью, эпидемией и революцией можно управлять.
Открыто новое свойство реальности.
Главным мировоззренческим прорывом нашего времени стало понимание, что мир – это сеть. Все вокруг состоит из сложных сетей (complex networks), изучение которых стало важнейшим направлением междисциплинарных исследований математиков, айтишников, физиков, биологов, социологов и экономистов.
• Оказалось, что успех, известность и популярность – всего лишь следствие свойств гиперсетей человеческих связей: их контактов, отношений, инфопотоков и т.д.
• Эпидемии – аналогично, только состав гиперсетей расширяется (добавляются транспортные сети, сети мобильности и т.д.).
• И даже революции (от «малых революций» идей, мифов и моды до «больших революций» в науке, политическом и социальном устройстве), - это тоже сетевые явления массового «возгорания» сетей при распространении по ним лавины каскадов.
Исследования даже самых простых структурных свойств сложных сетей уже принесли множество откровений и даже открытий.
Напр. изучение распределения степеней (числа связей) узлов, коэффициентов кластеризации и ассортативности (это когда узлы с большим числом связей (звёзды известности и влияния) предпочитают быть связаны со «звездами») принесло понимание механизмов популярности и карьерного успеха (см. #scienceofsuccess), а также ряда сетевых парадоксов, типа парадокса дружбы - у большинства людей друзей меньше, чем в среднем у их друзей.
Это только кажется просто – понять, какую роль в успешности, например, радио «Эхо Москвы» играет «телефонная книжка» Венедиктова. Ясно, что большую. Но количественно оценить это можно только в результате сложносетевого анализа.
Но вот очередной качественный прорыв – открытие нового свойства сложных сетей и его влияния на мир. Свойство называется транссортативность. Оно обобщает понятие ассортативности от непосредственных соседей по графу, напр. ваших знакомых, до знакомых ваших знакомых. И вот для всего этого множества «знакомых ваших знакомых» транссортативность показывает корреляцию степеней (числа связей) между парами узлов.
Это новое свойство исследовали на 6 сетях из разных областей: социальные сети Facebook и Digg, биологическая сеть белковых взаимодействий Reactome, сети соавторства HepPh и HepTh, семантическая сеть WordNet. Количество узлов варьировалось от 34 до 876 тыс., а количество ребер от 78 до 4,3 млн.
Результаты феноменальные. Вот лишь 3 главных.
1) Транссортативность усиливает эффект «иллюзии большинства», когда непопулярная идея может восприниматься как популярная у большой части людей.
Очевидно, что это крайне важно для власти, поддержка которой со стороны общества во многом зависит от «иллюзии большинства». И это значит, что путем влияния на транссортативность, можно существенно укреплять позиции власти в социальных медиа.
Другой пример использования этого эффекта – снижение «уровня несчастности» пользователей соцсетей (когда соседи видят большую часть счастливых друзей, и наивный наблюдатель приходит к выводу, что большинство его друзей счастливы).
2) Транссортативность влияет на размер и критический порог каскадов. Подобно тому, как она усиливает эффект «иллюзии большинства» в узлах низкой или средней степени, она может заставить узлы воспринимать небольшую долю активных узлов, как большую часть их соседей, и из-за этого самим активироваться. Таким образом, даже умеренная транссортативность может оказать существенное влияние на формирование глобальных каскадов.
3) Как следствие 1 и 2, транссортативность дестабилизирует сети для глобальных вспышек: от эпидемий до революций.
Эти результаты уточняют и расширяют важные моменты, о которых я давно пишу – 1, 2, 3, 4
Также см. #СоциальноеЗаражение #СоциальнаяЗараза #Каскады #Инфокаскады
Открыто новое свойство реальности.
Главным мировоззренческим прорывом нашего времени стало понимание, что мир – это сеть. Все вокруг состоит из сложных сетей (complex networks), изучение которых стало важнейшим направлением междисциплинарных исследований математиков, айтишников, физиков, биологов, социологов и экономистов.
• Оказалось, что успех, известность и популярность – всего лишь следствие свойств гиперсетей человеческих связей: их контактов, отношений, инфопотоков и т.д.
• Эпидемии – аналогично, только состав гиперсетей расширяется (добавляются транспортные сети, сети мобильности и т.д.).
• И даже революции (от «малых революций» идей, мифов и моды до «больших революций» в науке, политическом и социальном устройстве), - это тоже сетевые явления массового «возгорания» сетей при распространении по ним лавины каскадов.
Исследования даже самых простых структурных свойств сложных сетей уже принесли множество откровений и даже открытий.
Напр. изучение распределения степеней (числа связей) узлов, коэффициентов кластеризации и ассортативности (это когда узлы с большим числом связей (звёзды известности и влияния) предпочитают быть связаны со «звездами») принесло понимание механизмов популярности и карьерного успеха (см. #scienceofsuccess), а также ряда сетевых парадоксов, типа парадокса дружбы - у большинства людей друзей меньше, чем в среднем у их друзей.
Это только кажется просто – понять, какую роль в успешности, например, радио «Эхо Москвы» играет «телефонная книжка» Венедиктова. Ясно, что большую. Но количественно оценить это можно только в результате сложносетевого анализа.
Но вот очередной качественный прорыв – открытие нового свойства сложных сетей и его влияния на мир. Свойство называется транссортативность. Оно обобщает понятие ассортативности от непосредственных соседей по графу, напр. ваших знакомых, до знакомых ваших знакомых. И вот для всего этого множества «знакомых ваших знакомых» транссортативность показывает корреляцию степеней (числа связей) между парами узлов.
Это новое свойство исследовали на 6 сетях из разных областей: социальные сети Facebook и Digg, биологическая сеть белковых взаимодействий Reactome, сети соавторства HepPh и HepTh, семантическая сеть WordNet. Количество узлов варьировалось от 34 до 876 тыс., а количество ребер от 78 до 4,3 млн.
Результаты феноменальные. Вот лишь 3 главных.
1) Транссортативность усиливает эффект «иллюзии большинства», когда непопулярная идея может восприниматься как популярная у большой части людей.
Очевидно, что это крайне важно для власти, поддержка которой со стороны общества во многом зависит от «иллюзии большинства». И это значит, что путем влияния на транссортативность, можно существенно укреплять позиции власти в социальных медиа.
Другой пример использования этого эффекта – снижение «уровня несчастности» пользователей соцсетей (когда соседи видят большую часть счастливых друзей, и наивный наблюдатель приходит к выводу, что большинство его друзей счастливы).
2) Транссортативность влияет на размер и критический порог каскадов. Подобно тому, как она усиливает эффект «иллюзии большинства» в узлах низкой или средней степени, она может заставить узлы воспринимать небольшую долю активных узлов, как большую часть их соседей, и из-за этого самим активироваться. Таким образом, даже умеренная транссортативность может оказать существенное влияние на формирование глобальных каскадов.
3) Как следствие 1 и 2, транссортативность дестабилизирует сети для глобальных вспышек: от эпидемий до революций.
Эти результаты уточняют и расширяют важные моменты, о которых я давно пишу – 1, 2, 3, 4
Также см. #СоциальноеЗаражение #СоциальнаяЗараза #Каскады #Инфокаскады
royalsocietypublishing.org
The transsortative structure of networks | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Network topologies can be highly non-trivial, due to the complex underlying behaviours that form them. While past research has shown that some processes on networks may be characterized by local st...