Data Science. SQL hub
32.9K subscribers
846 photos
40 videos
36 files
912 links
По всем вопросам- @workakkk

@itchannels_telegram - 🔥лучшие ит-каналы

@ai_machinelearning_big_data - Machine learning

@pythonl - Python

@pythonlbooks- python книги📚

@datascienceiot - ml книги📚

РКН: https://vk.cc/cIi9vo
Download Telegram
🖥 Открытая модель SQL-запросы из естественного языка

На HuggingFace вышла модель Text-to-SQL на 6.91 млрд. параметров.

Модель позволяет превращать обычный текстовый запрос к БД в SQL-выражение:

Вопрос: Выведи день, когда пришло больше всего пользователей

Ответ:
SELECT created_at::DATE AS day, COUNT(*) AS user_count
FROM users
GROUP BY day
ORDER BY user_count DESC
LIMIT 1;

Код:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("chatdb/natural-sql-7b")
model = AutoModelForCausalLM.from_pretrained(
"chatdb/natural-sql-7b",
device_map="auto",
torch_dtype=torch.float16,
)

#sql #llm

@sqlhub
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
⚡️ Llama 3.3 70B.

Модель доступна в версии с 70 млрд параметров и оптимизирована для диалоговых сценариев использования на нескольких языках. Llama 3.3 превосходит многие доступные модели с открытым и закрытым исходным кодом по стандартным отраслевым бенчмаркам.

Llama 3.3 основана на оптимизированной архитектуре трансформера и использует авторегрессивный подход. Настройка модели включает SFT с RLHF для согласования с человеческими предпочтениями в отношении полезности и безопасности.

Модель была обучена на новом наборе общедоступных онлайн-данных, включающем более 15 триллионов токенов, с ограничением по свежести данных до декабря 2023 года.

Llama 3.3 поддерживает английский, немецкий, французский, итальянский, португальский, хинди, испанский и тайский языки.

▶️ Пример инфренса на Transformers:

import transformers
import torch

model_id = "meta-llama/Llama-3.3-70B-Instruct"

pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)

messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]

outputs = pipeline(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])


📌Лицензирование: LLAMA 3.3 License.


🟡Модель
🟡Demo


@ai_machinelearning_big_data

#AI #ML #LLM #Llama3
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🔥 Российские ученые представят рекордное количество работ на NeurIPS 2024 в Ванкувере.

Специалисты из AIRI подготовили к презентации 17 научных работ. Среди исследуемых тем — обновление крупнейшего в мире датасета для лекарственных молекул, оптимизация в машинном обучении, а также методы удешевления обучения AI-моделей.

Одна из работ, подготовленных совместно с Лабораторией искусственного интеллекта Сбера, изучает влияние эмоций на принятие решений нейросетями. По словам старшего вице-президента Сбера Андрея Белевцева, такой успех говорит о высокой конкурентоспособности отечественной науки в области AI на мировой арене.

@ai_machinelearning_big_data

#AI #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
📧🤖 ART: интеллектуальный e-mail-агент с памятью, действиями и "мыслями"

OpenPipe представили подробный разбор архитектуры ART (Action–Recall–Thought) — это не просто бот, а полноценный агент, который может читать письма, анализировать контекст, планировать действия и запоминать диалог. Такой себе LLM-секретарь, который не забывает, что вы писали неделю назад, и умеет реагировать правильно.

🧠 Что такое ART?

ART — это архитектура, построенная вокруг трёх основных элементов:
1️⃣ Action — агент может действовать: писать ответы, создавать события, ставить задачи, отправлять follow-up.
2️⃣ Recall — агент вспоминает: использует векторную память, чтобы помнить важные детали переписки.
3️⃣ Thought — агент думает: размышляет о контексте, выбирает нужные шаги и обновляет своё внутреннее состояние.

Каждый запуск агента — это один цикл мышления, в котором он анализирует новое письмо, сравнивает его с памятью и решает, что делать.

🧩 Как работает?

Архитектура построена на LangGraph — фреймворке для создания LLM-агентов с управляемыми потоками данных (узлы, переходы, состояния).

🧬 Компоненты:
- Nodes:
- Reader: разбирает новое письмо
- Memory Retriever: ищет релевантные воспоминания
- Planner: решает, что делать
- Executor: выполняет действия (ответ, событие и т.д.)
- Reflector: обновляет размышления агента

- Memory:
- Используется ChromaDB (векторная база), куда сохраняются ключевые сообщения, решения, действия и мысли.

- Tools:
- Встроенные функции-агенты (tools) для генерации писем, событий, напоминаний, оповещений и т.п.
- Всё вызывается динамически через LLM, как в OpenAI function calling.

🔁 Как агент работает на практике?

Пример цикла:

1. Приходит e-mail → Reader извлекает суть.
2. Memory Retriever ищет похожие прошлые переписки.
3. Planner решает: ответить? создать задачу? проигнорировать?
4. Executor выполняет нужное действие.
5. Reflector обновляет память и размышления.

Следующее письмо будет уже обрабатываться с учётом прошлого контекста. Агент понимает цепочку, тему, задачи и автоматически действует.

💡 Что делает ART особенным?

Работает в несколько итераций, не просто «prompt → response»
Помнит прошлые письма, решения, даже ошибки
Сам планирует, что делать: отвечать, пересылать, напоминать
Обновляет свои действия при изменении входных данных
Настраивается под любые задачи: продажи, саппорт, личные письма, менеджмент

📎 Полный разбор от OpenPipe с примерами кода, схемами и демонстрацией:

👉 https://openpipe.ai/blog/art-e-mail-agent

Если ты хочешь строить LLM-агентов с настоящей памятью и логикой — это must-read. Это шаг к настоящим автономным ассистентам.

#AI #LLM #autonomousagents #LangGraph #e-mail #productivity #openpipe #инструменты

@sqlhub