๐ Mastering Spark: 20 Interview Questions Demystified!
1๏ธโฃ MapReduce vs. Spark: Learn how Spark achieves 100x faster performance compared to MapReduce.
2๏ธโฃ RDD vs. DataFrame: Unravel the key differences between RDD and DataFrame, and discover what makes DataFrame unique.
3๏ธโฃ DataFrame vs. Datasets: Delve into the distinctions between DataFrame and Datasets in Spark.
4๏ธโฃ RDD Operations: Explore the various RDD operations that power Spark.
5๏ธโฃ Narrow vs. Wide Transformations: Understand the differences between narrow and wide transformations in Spark.
6๏ธโฃ Shared Variables: Discover the shared variables that facilitate distributed computing in Spark.
7๏ธโฃ Persist vs. Cache: Differentiate between the persist and cache functionalities in Spark.
8๏ธโฃ Spark Checkpointing: Learn about Spark checkpointing and how it differs from persisting to disk.
9๏ธโฃ SparkSession vs. SparkContext: Understand the roles of SparkSession and SparkContext in Spark applications.
๐ spark-submit Parameters: Explore the parameters to specify in the spark-submit command.
1๏ธโฃ1๏ธโฃ Cluster Managers in Spark: Familiarize yourself with the different types of cluster managers available in Spark.
1๏ธโฃ2๏ธโฃ Deploy Modes: Learn about the deploy modes in Spark and their significance.
1๏ธโฃ3๏ธโฃ Executor vs. Executor Core: Distinguish between executor and executor core in the Spark ecosystem.
1๏ธโฃ4๏ธโฃ Shuffling Concept: Gain insights into the shuffling concept in Spark and its importance.
1๏ธโฃ5๏ธโฃ Number of Stages in Spark Job: Understand how to decide the number of stages created in a Spark job.
1๏ธโฃ6๏ธโฃ Spark Job Execution Internals: Get a peek into how Spark internally executes a program.
1๏ธโฃ7๏ธโฃ Direct Output Storage: Explore the possibility of directly storing output without sending it back to the driver.
1๏ธโฃ8๏ธโฃ Coalesce and Repartition: Learn about the applications of coalesce and repartition in Spark.
1๏ธโฃ9๏ธโฃ Physical and Logical Plan Optimization: Uncover the optimization techniques employed in Spark's physical and logical plans.
2๏ธโฃ0๏ธโฃ Treereduce and Treeaggregate: Discover why treereduce and treeaggregate are preferred over reduceByKey and aggregateByKey in certain scenarios.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
1๏ธโฃ MapReduce vs. Spark: Learn how Spark achieves 100x faster performance compared to MapReduce.
2๏ธโฃ RDD vs. DataFrame: Unravel the key differences between RDD and DataFrame, and discover what makes DataFrame unique.
3๏ธโฃ DataFrame vs. Datasets: Delve into the distinctions between DataFrame and Datasets in Spark.
4๏ธโฃ RDD Operations: Explore the various RDD operations that power Spark.
5๏ธโฃ Narrow vs. Wide Transformations: Understand the differences between narrow and wide transformations in Spark.
6๏ธโฃ Shared Variables: Discover the shared variables that facilitate distributed computing in Spark.
7๏ธโฃ Persist vs. Cache: Differentiate between the persist and cache functionalities in Spark.
8๏ธโฃ Spark Checkpointing: Learn about Spark checkpointing and how it differs from persisting to disk.
9๏ธโฃ SparkSession vs. SparkContext: Understand the roles of SparkSession and SparkContext in Spark applications.
๐ spark-submit Parameters: Explore the parameters to specify in the spark-submit command.
1๏ธโฃ1๏ธโฃ Cluster Managers in Spark: Familiarize yourself with the different types of cluster managers available in Spark.
1๏ธโฃ2๏ธโฃ Deploy Modes: Learn about the deploy modes in Spark and their significance.
1๏ธโฃ3๏ธโฃ Executor vs. Executor Core: Distinguish between executor and executor core in the Spark ecosystem.
1๏ธโฃ4๏ธโฃ Shuffling Concept: Gain insights into the shuffling concept in Spark and its importance.
1๏ธโฃ5๏ธโฃ Number of Stages in Spark Job: Understand how to decide the number of stages created in a Spark job.
1๏ธโฃ6๏ธโฃ Spark Job Execution Internals: Get a peek into how Spark internally executes a program.
1๏ธโฃ7๏ธโฃ Direct Output Storage: Explore the possibility of directly storing output without sending it back to the driver.
1๏ธโฃ8๏ธโฃ Coalesce and Repartition: Learn about the applications of coalesce and repartition in Spark.
1๏ธโฃ9๏ธโฃ Physical and Logical Plan Optimization: Uncover the optimization techniques employed in Spark's physical and logical plans.
2๏ธโฃ0๏ธโฃ Treereduce and Treeaggregate: Discover why treereduce and treeaggregate are preferred over reduceByKey and aggregateByKey in certain scenarios.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
๐1
Forwarded from Artificial Intelligence
๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐๐ป๐ฑ๐ฎ๐บ๐ฒ๐ป๐๐ฎ๐น๐ ๐ณ๐ผ๐ฟ ๐ง๐ฒ๐ฐ๐ต & ๐๐ฎ๐๐ฎ ๐ฅ๐ผ๐น๐ฒ๐ โ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ ๐๐๐ถ๐ฑ๐ฒ๐
If youโre aiming for a role in tech, data analytics, or software development, one of the most valuable skills you can master is Python๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jg88I8
All The Best ๐
If youโre aiming for a role in tech, data analytics, or software development, one of the most valuable skills you can master is Python๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jg88I8
All The Best ๐
๐1
WhatsApp is no longer a platform just for chat.
It's an educational goldmine.
If you do, youโre sleeping on a goldmine of knowledge and community. WhatsApp channels are a great way to practice data science, make your own community, and find accountability partners.
I have curated the list of best WhatsApp channels to learn coding & data science for FREE
Free Courses with Certificate
๐๐
https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
Jobs & Internship Opportunities
๐๐
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development
๐๐
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
Python Free Books & Projects
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Java Free Resources
๐๐
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
Coding Interviews
๐๐
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
SQL For Data Analysis
๐๐
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Power BI Resources
๐๐
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Programming Free Resources
๐๐
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Data Science Projects
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Learn Data Science & Machine Learning
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Coding Projects
๐๐
https://whatsapp.com/channel/0029VamhFMt7j6fx4bYsX908
Excel for Data Analyst
๐๐
https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i
ENJOY LEARNING ๐๐
It's an educational goldmine.
If you do, youโre sleeping on a goldmine of knowledge and community. WhatsApp channels are a great way to practice data science, make your own community, and find accountability partners.
I have curated the list of best WhatsApp channels to learn coding & data science for FREE
Free Courses with Certificate
๐๐
https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
Jobs & Internship Opportunities
๐๐
https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226
Web Development
๐๐
https://whatsapp.com/channel/0029VaiSdWu4NVis9yNEE72z
Python Free Books & Projects
๐๐
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Java Free Resources
๐๐
https://whatsapp.com/channel/0029VamdH5mHAdNMHMSBwg1s
Coding Interviews
๐๐
https://whatsapp.com/channel/0029VammZijATRSlLxywEC3X
SQL For Data Analysis
๐๐
https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
Power BI Resources
๐๐
https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Programming Free Resources
๐๐
https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17
Data Science Projects
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Learn Data Science & Machine Learning
๐๐
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Coding Projects
๐๐
https://whatsapp.com/channel/0029VamhFMt7j6fx4bYsX908
Excel for Data Analyst
๐๐
https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i
ENJOY LEARNING ๐๐
๐2
Forwarded from Python Projects & Resources
๐ฏ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ-๐๐ฟ๐ถ๐ฒ๐ป๐ฑ๐น๐ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐๐ผ ๐๐๐ถ๐น๐ฑ ๐ฌ๐ผ๐๐ฟ ๐ฃ๐ผ๐ฟ๐๐ณ๐ผ๐น๐ถ๐ผ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
๐ฉโ๐ป Want to Break into Data Science but Donโt Know Where to Start?๐
The best way to begin your data science journey is with hands-on projects using real-world datasets.๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/44LoViW
Enjoy Learning โ ๏ธ
๐ฉโ๐ป Want to Break into Data Science but Donโt Know Where to Start?๐
The best way to begin your data science journey is with hands-on projects using real-world datasets.๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/44LoViW
Enjoy Learning โ ๏ธ
Forwarded from Python Projects & Resources
๐๐ผ๐ผ๐ด๐น๐ฒ ๐ง๐ผ๐ฝ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
If youโre job hunting, switching careers, or just want to upgrade your skill set โ Google Skillshop is your go-to platform in 2025!
Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4dwlDT2
Enroll For FREE & Get Certified ๐๏ธ
If youโre job hunting, switching careers, or just want to upgrade your skill set โ Google Skillshop is your go-to platform in 2025!
Google offers completely free certifications that are globally recognized and valued by employers in tech, digital marketing, business, and analytics๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4dwlDT2
Enroll For FREE & Get Certified ๐๏ธ
๐1
๐ณ ๐๐ฒ๐๐ ๐ช๐ฒ๐ฏ๐๐ถ๐๐ฒ๐ ๐๐ผ ๐๐ฒ๐ฎ๐ฟ๐ป ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ณ๐ผ๐ฟ ๐๐ฅ๐๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ (๐ก๐ผ ๐๐ผ๐๐, ๐ก๐ผ ๐๐ฎ๐๐ฐ๐ต!)๐
Want to become a Data Scientist in 2025 without spending a single rupee? Youโre in the right place๐
From Python and machine learning to hands-on projects and challenges๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4dAuymr
Enjoy Learning โ ๏ธ
Want to become a Data Scientist in 2025 without spending a single rupee? Youโre in the right place๐
From Python and machine learning to hands-on projects and challenges๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4dAuymr
Enjoy Learning โ ๏ธ
โค1
SNOWFLAKES AND DATABRICKS
Snowflake and Databricks are leading cloud data platforms, but how do you choose the right one for your needs?
๐ ๐๐ง๐จ๐ฐ๐๐ฅ๐๐ค๐
โ๏ธ ๐๐๐ญ๐ฎ๐ซ๐: Snowflake operates as a cloud-native data warehouse-as-a-service, streamlining data storage and management without the need for complex infrastructure setup.
โ๏ธ ๐๐ญ๐ซ๐๐ง๐ ๐ญ๐ก๐ฌ: It provides robust ELT (Extract, Load, Transform) capabilities primarily through its COPY command, enabling efficient data loading.
โ๏ธ Snowflake offers dedicated schema and file object definitions, enhancing data organization and accessibility.
โ๏ธ ๐ ๐ฅ๐๐ฑ๐ข๐๐ข๐ฅ๐ข๐ญ๐ฒ: One of its standout features is the ability to create multiple independent compute clusters that can operate on a single data copy. This flexibility allows for enhanced resource allocation based on varying workloads.
โ๏ธ ๐๐๐ญ๐ ๐๐ง๐ ๐ข๐ง๐๐๐ซ๐ข๐ง๐ : While Snowflake primarily adopts an ELT approach, it seamlessly integrates with popular third-party ETL tools such as Fivetran, Talend, and supports DBT installation. This integration makes it a versatile choice for organizations looking to leverage existing tools.
๐ ๐๐๐ญ๐๐๐ซ๐ข๐๐ค๐ฌ
โ๏ธ ๐๐จ๐ซ๐: Databricks is fundamentally built around processing power, with native support for Apache Spark, making it an exceptional platform for ETL tasks. This integration allows users to perform complex data transformations efficiently.
โ๏ธ ๐๐ญ๐จ๐ซ๐๐ ๐: It utilizes a 'data lakehouse' architecture, which combines the features of a data lake with the ability to run SQL queries. This model is gaining traction as organizations seek to leverage both structured and unstructured data in a unified framework.
๐ ๐๐๐ฒ ๐๐๐ค๐๐๐ฐ๐๐ฒ๐ฌ
โ๏ธ ๐๐ข๐ฌ๐ญ๐ข๐ง๐๐ญ ๐๐๐๐๐ฌ: Both Snowflake and Databricks excel in their respective areas, addressing different data management requirements.
โ๏ธ ๐๐ง๐จ๐ฐ๐๐ฅ๐๐ค๐โ๐ฌ ๐๐๐๐๐ฅ ๐๐ฌ๐ ๐๐๐ฌ๐: If you are equipped with established ETL tools like Fivetran, Talend, or Tibco, Snowflake could be the perfect choice. It efficiently manages the complexities of database infrastructure, including partitioning, scalability, and indexing.
โ๏ธ ๐๐๐ญ๐๐๐ซ๐ข๐๐ค๐ฌ ๐๐จ๐ซ ๐๐จ๐ฆ๐ฉ๐ฅ๐๐ฑ ๐๐๐ง๐๐ฌ๐๐๐ฉ๐๐ฌ: Conversely, if your organization deals with a complex data landscape characterized by unpredictable sources and schemas, Databricksโwith its schema-on-read techniqueโmay be more advantageous.
๐ ๐๐จ๐ง๐๐ฅ๐ฎ๐ฌ๐ข๐จ๐ง:
Ultimately, the decision between Snowflake and Databricks should align with your specific data needs and organizational goals. Both platforms have established their niches, and understanding their strengths will guide you in selecting the right tool for your data strategy.
Snowflake and Databricks are leading cloud data platforms, but how do you choose the right one for your needs?
๐ ๐๐ง๐จ๐ฐ๐๐ฅ๐๐ค๐
โ๏ธ ๐๐๐ญ๐ฎ๐ซ๐: Snowflake operates as a cloud-native data warehouse-as-a-service, streamlining data storage and management without the need for complex infrastructure setup.
โ๏ธ ๐๐ญ๐ซ๐๐ง๐ ๐ญ๐ก๐ฌ: It provides robust ELT (Extract, Load, Transform) capabilities primarily through its COPY command, enabling efficient data loading.
โ๏ธ Snowflake offers dedicated schema and file object definitions, enhancing data organization and accessibility.
โ๏ธ ๐ ๐ฅ๐๐ฑ๐ข๐๐ข๐ฅ๐ข๐ญ๐ฒ: One of its standout features is the ability to create multiple independent compute clusters that can operate on a single data copy. This flexibility allows for enhanced resource allocation based on varying workloads.
โ๏ธ ๐๐๐ญ๐ ๐๐ง๐ ๐ข๐ง๐๐๐ซ๐ข๐ง๐ : While Snowflake primarily adopts an ELT approach, it seamlessly integrates with popular third-party ETL tools such as Fivetran, Talend, and supports DBT installation. This integration makes it a versatile choice for organizations looking to leverage existing tools.
๐ ๐๐๐ญ๐๐๐ซ๐ข๐๐ค๐ฌ
โ๏ธ ๐๐จ๐ซ๐: Databricks is fundamentally built around processing power, with native support for Apache Spark, making it an exceptional platform for ETL tasks. This integration allows users to perform complex data transformations efficiently.
โ๏ธ ๐๐ญ๐จ๐ซ๐๐ ๐: It utilizes a 'data lakehouse' architecture, which combines the features of a data lake with the ability to run SQL queries. This model is gaining traction as organizations seek to leverage both structured and unstructured data in a unified framework.
๐ ๐๐๐ฒ ๐๐๐ค๐๐๐ฐ๐๐ฒ๐ฌ
โ๏ธ ๐๐ข๐ฌ๐ญ๐ข๐ง๐๐ญ ๐๐๐๐๐ฌ: Both Snowflake and Databricks excel in their respective areas, addressing different data management requirements.
โ๏ธ ๐๐ง๐จ๐ฐ๐๐ฅ๐๐ค๐โ๐ฌ ๐๐๐๐๐ฅ ๐๐ฌ๐ ๐๐๐ฌ๐: If you are equipped with established ETL tools like Fivetran, Talend, or Tibco, Snowflake could be the perfect choice. It efficiently manages the complexities of database infrastructure, including partitioning, scalability, and indexing.
โ๏ธ ๐๐๐ญ๐๐๐ซ๐ข๐๐ค๐ฌ ๐๐จ๐ซ ๐๐จ๐ฆ๐ฉ๐ฅ๐๐ฑ ๐๐๐ง๐๐ฌ๐๐๐ฉ๐๐ฌ: Conversely, if your organization deals with a complex data landscape characterized by unpredictable sources and schemas, Databricksโwith its schema-on-read techniqueโmay be more advantageous.
๐ ๐๐จ๐ง๐๐ฅ๐ฎ๐ฌ๐ข๐จ๐ง:
Ultimately, the decision between Snowflake and Databricks should align with your specific data needs and organizational goals. Both platforms have established their niches, and understanding their strengths will guide you in selecting the right tool for your data strategy.
โค2
Forwarded from Python Projects & Resources
๐๐ฟ๐ฒ๐ฎ๐ธ ๐๐ป๐๐ผ ๐๐ฒ๐ฒ๐ฝ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐๐ถ๐๐ต ๐ง๐ต๐ถ๐ ๐๐ฅ๐๐ ๐ ๐๐ง ๐๐ผ๐๐ฟ๐๐ฒ๐
If youโre serious about AI, you canโt skip Deep Learningโand this FREE course from MIT is one of the best ways to start๐จโ๐ป๐
Offered by MITโs top researchers and engineers, this online course is open to everyone, no matter where you live or work๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3H6cggR
Why wait to get started when you can learn from MIT for free?โ ๏ธ
If youโre serious about AI, you canโt skip Deep Learningโand this FREE course from MIT is one of the best ways to start๐จโ๐ป๐
Offered by MITโs top researchers and engineers, this online course is open to everyone, no matter where you live or work๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3H6cggR
Why wait to get started when you can learn from MIT for free?โ ๏ธ
๐1
Here are some commonly asked SQL interview questions along with brief answers:
1. What is SQL?
- SQL stands for Structured Query Language, used for managing and manipulating relational databases.
2. What are the types of SQL commands?
- SQL commands can be broadly categorized into four types: Data Definition Language (DDL), Data Manipulation Language (DML), Data Control Language (DCL), and Transaction Control Language (TCL).
3. What is the difference between CHAR and VARCHAR data types?
- CHAR is a fixed-length character data type, while VARCHAR is a variable-length character data type. CHAR will always occupy the same amount of storage space, while VARCHAR will only use the necessary space to store the actual data.
4. What is a primary key?
- A primary key is a column or a set of columns that uniquely identifies each row in a table. It ensures data integrity by enforcing uniqueness and can be used to establish relationships between tables.
5. What is a foreign key?
- A foreign key is a column or a set of columns in one table that refers to the primary key in another table. It establishes a relationship between two tables and ensures referential integrity.
6. What is a JOIN in SQL?
- JOIN is used to combine rows from two or more tables based on a related column between them. There are different types of JOINs, including INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN.
7. What is the difference between INNER JOIN and OUTER JOIN?
- INNER JOIN returns only the rows that have matching values in both tables, while OUTER JOIN (LEFT, RIGHT, FULL) returns all rows from one or both tables, with NULL values in columns where there is no match.
8. What is the difference between GROUP BY and ORDER BY?
- GROUP BY is used to group rows that have the same values into summary rows, typically used with aggregate functions like SUM, COUNT, AVG, etc., while ORDER BY is used to sort the result set based on one or more columns.
9. What is a subquery?
- A subquery is a query nested within another query, used to return data that will be used in the main query. Subqueries can be used in SELECT, INSERT, UPDATE, and DELETE statements.
10. What is normalization in SQL?
- Normalization is the process of organizing data in a database to reduce redundancy and dependency. It involves dividing large tables into smaller tables and defining relationships between them to improve data integrity and efficiency.
Around 90% questions will be asked from sql in data analytics interview, so please make sure to practice SQL skills using websites like stratascratch. โบ๏ธ๐ช
1. What is SQL?
- SQL stands for Structured Query Language, used for managing and manipulating relational databases.
2. What are the types of SQL commands?
- SQL commands can be broadly categorized into four types: Data Definition Language (DDL), Data Manipulation Language (DML), Data Control Language (DCL), and Transaction Control Language (TCL).
3. What is the difference between CHAR and VARCHAR data types?
- CHAR is a fixed-length character data type, while VARCHAR is a variable-length character data type. CHAR will always occupy the same amount of storage space, while VARCHAR will only use the necessary space to store the actual data.
4. What is a primary key?
- A primary key is a column or a set of columns that uniquely identifies each row in a table. It ensures data integrity by enforcing uniqueness and can be used to establish relationships between tables.
5. What is a foreign key?
- A foreign key is a column or a set of columns in one table that refers to the primary key in another table. It establishes a relationship between two tables and ensures referential integrity.
6. What is a JOIN in SQL?
- JOIN is used to combine rows from two or more tables based on a related column between them. There are different types of JOINs, including INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN.
7. What is the difference between INNER JOIN and OUTER JOIN?
- INNER JOIN returns only the rows that have matching values in both tables, while OUTER JOIN (LEFT, RIGHT, FULL) returns all rows from one or both tables, with NULL values in columns where there is no match.
8. What is the difference between GROUP BY and ORDER BY?
- GROUP BY is used to group rows that have the same values into summary rows, typically used with aggregate functions like SUM, COUNT, AVG, etc., while ORDER BY is used to sort the result set based on one or more columns.
9. What is a subquery?
- A subquery is a query nested within another query, used to return data that will be used in the main query. Subqueries can be used in SELECT, INSERT, UPDATE, and DELETE statements.
10. What is normalization in SQL?
- Normalization is the process of organizing data in a database to reduce redundancy and dependency. It involves dividing large tables into smaller tables and defining relationships between them to improve data integrity and efficiency.
Around 90% questions will be asked from sql in data analytics interview, so please make sure to practice SQL skills using websites like stratascratch. โบ๏ธ๐ช
โค3๐1
Forwarded from Artificial Intelligence
๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ผ ๐๐ป๐ฟ๐ผ๐น๐น ๐๐ป ๐ฎ๐ฌ๐ฎ๐ฑ ๐
Data Analytics :- https://pdlink.in/3Fq7E4p
Data Science :- https://pdlink.in/4iSWjaP
SQL :- https://pdlink.in/3EyjUPt
Python :- https://pdlink.in/4c7hGDL
Web Dev :- https://bit.ly/4ffFnJZ
AI :- https://pdlink.in/4d0SrTG
Enroll For FREE & Get Certified ๐
Data Analytics :- https://pdlink.in/3Fq7E4p
Data Science :- https://pdlink.in/4iSWjaP
SQL :- https://pdlink.in/3EyjUPt
Python :- https://pdlink.in/4c7hGDL
Web Dev :- https://bit.ly/4ffFnJZ
AI :- https://pdlink.in/4d0SrTG
Enroll For FREE & Get Certified ๐
Netflix Analytics Engineer Interview Experience:
SQL Questions:
1๏ธโฃ SQL Question 1: Identify VIP Users for Netflix
Question: To better cater to its most dedicated users, Netflix would like to identify its โVIP usersโ - those who are most active in terms of the number of hours of content they watch. Write a SQL query that will retrieve the top 10 users with the most watched hours in the last month.
Tables:
โข users table: user_id (integer), sign_up_date (date), subscription_type (text)
โข watching_activity table: activity_id (integer), user_id (integer), date_time (timestamp), show_id (integer), hours_watched (float)
2๏ธโฃ SQL Question 2: Analyzing Ratings For Netflix Shows
Question: Given a table of user ratings for Netflix shows, calculate the average rating for each show within a given month. Assume that there is a column for user_id, show_id, rating (out of 5 stars), and date of review. Order the results by month and then by average rating (descending order).
Tables:
โข show_reviews table: review_id (integer), user_id (integer), review_date (timestamp), show_id (integer), stars (integer)
3๏ธโฃ SQL Question 3: What does EXCEPT / MINUS SQL commands do?
Question: Explain the purpose and usage of the EXCEPT (or MINUS in some SQL dialects) SQL commands.
4๏ธโฃ SQL Question 4: Filter Netflix Users Based on Viewing History and Subscription Status
Question: You are given a database of Netflixโs user viewing history and their current subscription status. Write a SQL query to find all active customers who watched more than 10 episodes of a show called โStranger Thingsโ in the last 30 days.
Tables:
โข users table: user_id (integer), active (boolean)
โข viewing_history table: user_id (integer), show_id (integer), episode_id (integer), watch_date (date)
โข shows table: show_id (integer), show_name (text)
5๏ธโฃ SQL Question 5: What does it mean to denormalize a database?
Question: Explain the concept and implications of denormalizing a database.
6๏ธโฃ SQL Question 6: Filter and Match Customerโs Viewing Records
Question: As a data analyst at Netflix, you are asked to analyze the customerโs viewing records. You confirmed that Netflix is especially interested in customers who have been continuously watching a particular genre - โDocumentaryโ over the last month. The task is to find the name and email of those customers who have viewed more than five โDocumentaryโ movies within the last month. โDocumentaryโ could be a part of a broader genre category in the genre field (for example, โDocumentary, Historyโ). Therefore, the matching pattern could occur anywhere within the string.
Tables:
โข movies table: movie_id (integer), title (text), genre (text), release_year (integer)
โข customer table: user_id (integer), name (text), email (text), last_movie_watched (integer), date_watched (date)
Here you can find essential SQL Interview Resources๐
https://t.me/mysqldata
Like this post if you need more ๐โค๏ธ
Hope it helps :)
SQL Questions:
1๏ธโฃ SQL Question 1: Identify VIP Users for Netflix
Question: To better cater to its most dedicated users, Netflix would like to identify its โVIP usersโ - those who are most active in terms of the number of hours of content they watch. Write a SQL query that will retrieve the top 10 users with the most watched hours in the last month.
Tables:
โข users table: user_id (integer), sign_up_date (date), subscription_type (text)
โข watching_activity table: activity_id (integer), user_id (integer), date_time (timestamp), show_id (integer), hours_watched (float)
2๏ธโฃ SQL Question 2: Analyzing Ratings For Netflix Shows
Question: Given a table of user ratings for Netflix shows, calculate the average rating for each show within a given month. Assume that there is a column for user_id, show_id, rating (out of 5 stars), and date of review. Order the results by month and then by average rating (descending order).
Tables:
โข show_reviews table: review_id (integer), user_id (integer), review_date (timestamp), show_id (integer), stars (integer)
3๏ธโฃ SQL Question 3: What does EXCEPT / MINUS SQL commands do?
Question: Explain the purpose and usage of the EXCEPT (or MINUS in some SQL dialects) SQL commands.
4๏ธโฃ SQL Question 4: Filter Netflix Users Based on Viewing History and Subscription Status
Question: You are given a database of Netflixโs user viewing history and their current subscription status. Write a SQL query to find all active customers who watched more than 10 episodes of a show called โStranger Thingsโ in the last 30 days.
Tables:
โข users table: user_id (integer), active (boolean)
โข viewing_history table: user_id (integer), show_id (integer), episode_id (integer), watch_date (date)
โข shows table: show_id (integer), show_name (text)
5๏ธโฃ SQL Question 5: What does it mean to denormalize a database?
Question: Explain the concept and implications of denormalizing a database.
6๏ธโฃ SQL Question 6: Filter and Match Customerโs Viewing Records
Question: As a data analyst at Netflix, you are asked to analyze the customerโs viewing records. You confirmed that Netflix is especially interested in customers who have been continuously watching a particular genre - โDocumentaryโ over the last month. The task is to find the name and email of those customers who have viewed more than five โDocumentaryโ movies within the last month. โDocumentaryโ could be a part of a broader genre category in the genre field (for example, โDocumentary, Historyโ). Therefore, the matching pattern could occur anywhere within the string.
Tables:
โข movies table: movie_id (integer), title (text), genre (text), release_year (integer)
โข customer table: user_id (integer), name (text), email (text), last_movie_watched (integer), date_watched (date)
Here you can find essential SQL Interview Resources๐
https://t.me/mysqldata
Like this post if you need more ๐โค๏ธ
Hope it helps :)
โค4๐2
We have now reached 85K subscribers on WhatsApp
Thank you guysโค๏ธ
Do subscribe if you havenโt yet for
BEST DATA ENGINEERING CONTENT
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
Thank you guysโค๏ธ
Do subscribe if you havenโt yet for
BEST DATA ENGINEERING CONTENT
https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
โค2
Forwarded from Artificial Intelligence
๐ฐ ๐๐ฟ๐ฒ๐ฒ ๐ฃ๐๐๐ต๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ฆ๐๐ฎ๐ฟ๐ ๐๐ผ๐ฑ๐ถ๐ป๐ด ๐๐ถ๐ธ๐ฒ ๐ฎ ๐ฃ๐ฟ๐ผ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Looking to kickstart your coding journey with Python? ๐
Whether youโre an aspiring data analyst, a student, or preparing for tech roles, these free Python courses are perfect for beginners!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jtpf9M
These platforms offer high-quality learning โ no fees, no catchโ ๏ธ
Looking to kickstart your coding journey with Python? ๐
Whether youโre an aspiring data analyst, a student, or preparing for tech roles, these free Python courses are perfect for beginners!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jtpf9M
These platforms offer high-quality learning โ no fees, no catchโ ๏ธ
โค2
๐ง๐ผ๐ฝ ๐ ๐ก๐๐ ๐ข๐ณ๐ณ๐ฒ๐ฟ๐ถ๐ป๐ด ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐
Google :- https://pdlink.in/3H2YJX7
Microsoft :- https://pdlink.in/4iq8QlM
Infosys :- https://pdlink.in/4jsHZXf
IBM :- https://pdlink.in/3QyJyqk
Cisco :- https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified ๐
Google :- https://pdlink.in/3H2YJX7
Microsoft :- https://pdlink.in/4iq8QlM
Infosys :- https://pdlink.in/4jsHZXf
IBM :- https://pdlink.in/3QyJyqk
Cisco :- https://pdlink.in/4fYr1xO
Enroll For FREE & Get Certified ๐
Forwarded from Python Projects & Resources
๐๐ฅ๐๐ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐ง๐ฒ๐ฐ๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐๐
๐ Learn In-Demand Tech Skills for Free โ Certified by Microsoft!
These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hio2Vg
Enroll For FREE & Get Certified๐๏ธ
๐ Learn In-Demand Tech Skills for Free โ Certified by Microsoft!
These free Microsoft-certified online courses are perfect for beginners, students, and professionals looking to upskill
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hio2Vg
Enroll For FREE & Get Certified๐๏ธ
โค1
๐๐ฅ๐๐ ๐ง๐๐ง๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฉ๐ถ๐ฟ๐๐๐ฎ๐น ๐๐ป๐๐ฒ๐ฟ๐ป๐๐ต๐ถ๐ฝ๐
Gain Real-World Data Analytics Experience with TATA โ 100% Free!
This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst โ no experience required!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FyjDgp
Enroll For FREE & Get Certified๐๏ธ
Gain Real-World Data Analytics Experience with TATA โ 100% Free!
This free TATA Data Analytics Virtual Internship on Forage lets you step into the shoes of a data analyst โ no experience required!
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FyjDgp
Enroll For FREE & Get Certified๐๏ธ
๐ฐ ๐ฃ๐ผ๐๐ฒ๐ฟ๐ณ๐๐น ๐๐ฟ๐ฒ๐ฒ ๐ฅ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ๐ฆ๐ฐ๐ฟ๐ถ๐ฝ๐, ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ, ๐๐/๐ ๐ & ๐๐ฟ๐ผ๐ป๐๐ฒ๐ป๐ฑ ๐๐ฒ๐๐ฒ๐น๐ผ๐ฝ๐บ๐ฒ๐ป๐ ๐
Learn Tech the Smart Way: Step-by-Step Roadmaps for Beginners๐
Learning tech doesnโt have to be overwhelmingโespecially when you have a roadmap to guide you!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45wfx2V
Enjoy Learning โ ๏ธ
Learn Tech the Smart Way: Step-by-Step Roadmaps for Beginners๐
Learning tech doesnโt have to be overwhelmingโespecially when you have a roadmap to guide you!๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45wfx2V
Enjoy Learning โ ๏ธ
โค1
Data Analyst vs Data Engineer vs Data Scientist โ
Skills required to become a Data Analyst ๐
- Advanced Excel: Proficiency in Excel is crucial for data manipulation, analysis, and creating dashboards.
- SQL/Oracle: SQL is essential for querying databases to extract, manipulate, and analyze data.
- Python/R: Basic scripting knowledge in Python or R for data cleaning, analysis, and simple automations.
- Data Visualization: Tools like Power BI or Tableau for creating interactive reports and dashboards.
- Statistical Analysis: Understanding of basic statistical concepts to analyze data trends and patterns.
Skills required to become a Data Engineer: ๐
- Programming Languages: Strong skills in Python or Java for building data pipelines and processing data.
- SQL and NoSQL: Knowledge of relational databases (SQL) and non-relational databases (NoSQL) like Cassandra or MongoDB.
- Big Data Technologies: Proficiency in Hadoop, Hive, Pig, or Spark for processing and managing large data sets.
- Data Warehousing: Experience with tools like Amazon Redshift, Google BigQuery, or Snowflake for storing and querying large datasets.
- ETL Processes: Expertise in Extract, Transform, Load (ETL) tools and processes for data integration.
Skills required to become a Data Scientist: ๐
- Advanced Tools: Deep knowledge of R, Python, or SAS for statistical analysis and data modeling.
- Machine Learning Algorithms: Understanding and implementation of algorithms using libraries like scikit-learn, TensorFlow, and Keras.
- SQL and NoSQL: Ability to work with both structured and unstructured data using SQL and NoSQL databases.
- Data Wrangling & Preprocessing: Skills in cleaning, transforming, and preparing data for analysis.
- Statistical and Mathematical Modeling: Strong grasp of statistics, probability, and mathematical techniques for building predictive models.
- Cloud Computing: Familiarity with AWS, Azure, or Google Cloud for deploying machine learning models.
Bonus Skills Across All Roles:
- Data Visualization: Mastery in tools like Power BI and Tableau to visualize and communicate insights effectively.
- Advanced Statistics: Strong statistical foundation to interpret and validate data findings.
- Domain Knowledge: Industry-specific knowledge (e.g., finance, healthcare) to apply data insights in context.
- Communication Skills: Ability to explain complex technical concepts to non-technical stakeholders.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.me/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Skills required to become a Data Analyst ๐
- Advanced Excel: Proficiency in Excel is crucial for data manipulation, analysis, and creating dashboards.
- SQL/Oracle: SQL is essential for querying databases to extract, manipulate, and analyze data.
- Python/R: Basic scripting knowledge in Python or R for data cleaning, analysis, and simple automations.
- Data Visualization: Tools like Power BI or Tableau for creating interactive reports and dashboards.
- Statistical Analysis: Understanding of basic statistical concepts to analyze data trends and patterns.
Skills required to become a Data Engineer: ๐
- Programming Languages: Strong skills in Python or Java for building data pipelines and processing data.
- SQL and NoSQL: Knowledge of relational databases (SQL) and non-relational databases (NoSQL) like Cassandra or MongoDB.
- Big Data Technologies: Proficiency in Hadoop, Hive, Pig, or Spark for processing and managing large data sets.
- Data Warehousing: Experience with tools like Amazon Redshift, Google BigQuery, or Snowflake for storing and querying large datasets.
- ETL Processes: Expertise in Extract, Transform, Load (ETL) tools and processes for data integration.
Skills required to become a Data Scientist: ๐
- Advanced Tools: Deep knowledge of R, Python, or SAS for statistical analysis and data modeling.
- Machine Learning Algorithms: Understanding and implementation of algorithms using libraries like scikit-learn, TensorFlow, and Keras.
- SQL and NoSQL: Ability to work with both structured and unstructured data using SQL and NoSQL databases.
- Data Wrangling & Preprocessing: Skills in cleaning, transforming, and preparing data for analysis.
- Statistical and Mathematical Modeling: Strong grasp of statistics, probability, and mathematical techniques for building predictive models.
- Cloud Computing: Familiarity with AWS, Azure, or Google Cloud for deploying machine learning models.
Bonus Skills Across All Roles:
- Data Visualization: Mastery in tools like Power BI and Tableau to visualize and communicate insights effectively.
- Advanced Statistics: Strong statistical foundation to interpret and validate data findings.
- Domain Knowledge: Industry-specific knowledge (e.g., finance, healthcare) to apply data insights in context.
- Communication Skills: Ability to explain complex technical concepts to non-technical stakeholders.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.me/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
โค1
Forwarded from Artificial Intelligence
๐ด ๐๐ฒ๐๐ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ณ๐ฟ๐ผ๐บ ๐๐ฎ๐ฟ๐๐ฎ๐ฟ๐ฑ, ๐ ๐๐ง & ๐ฆ๐๐ฎ๐ป๐ณ๐ผ๐ฟ๐ฑ๐
๐ Learn Data Science for Free from the Worldโs Best Universities๐
Top institutions like Harvard, MIT, and Stanford are offering world-class data science courses online โ and theyโre 100% free. ๐ฏ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hfpwjc
All The Best ๐
๐ Learn Data Science for Free from the Worldโs Best Universities๐
Top institutions like Harvard, MIT, and Stanford are offering world-class data science courses online โ and theyโre 100% free. ๐ฏ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Hfpwjc
All The Best ๐
โค1๐1