FREE RESOURCES TO LEARN DATA ENGINEERING
๐๐
Big Data and Hadoop Essentials free course
https://bit.ly/3rLxbul
Data Engineer: Prepare Financial Data for ML and Backtesting FREE UDEMY COURSE
[4.6 stars out of 5]
https://bit.ly/3fGRjLu
Understanding Data Engineering from Datacamp
https://clnk.in/soLY
Data Engineering Free Books
https://ia600201.us.archive.org/4/items/springer_10.1007-978-1-4419-0176-7/10.1007-978-1-4419-0176-7.pdf
https://www.darwinpricing.com/training/Data_Engineering_Cookbook.pdf
Big Data of Data Engineering Free book
https://databricks.com/wp-content/uploads/2021/10/Big-Book-of-Data-Engineering-Final.pdf
https://aimlcommunity.com/wp-content/uploads/2019/09/Data-Engineering.pdf
The Data Engineerโs Guide to Apache Spark
https://t.me/datasciencefun/783?single
Data Engineering with Python
https://t.me/pythondevelopersindia/343
Data Engineering Projects -
1.End-To-End From Web Scraping to Tableau https://lnkd.in/ePMw63ge
2. Building Data Model and Writing ETL Job https://lnkd.in/eq-e3_3J
3. Data Modeling and Analysis using Semantic Web Technologies https://lnkd.in/e4A86Ypq
4. ETL Project in Azure Data Factory - https://lnkd.in/eP8huQW3
5. ETL Pipeline on AWS Cloud - https://lnkd.in/ebgNtNRR
6. Covid Data Analysis Project - https://lnkd.in/eWZ3JfKD
7. YouTube Data Analysis
(End-To-End Data Engineering Project) - https://lnkd.in/eYJTEKwF
8. Twitter Data Pipeline using Airflow - https://lnkd.in/eNxHHZbY
9. Sentiment analysis Twitter:
Kafka and Spark Structured Streaming - https://lnkd.in/esVAaqtU
ENJOY LEARNING ๐๐
๐๐
Big Data and Hadoop Essentials free course
https://bit.ly/3rLxbul
Data Engineer: Prepare Financial Data for ML and Backtesting FREE UDEMY COURSE
[4.6 stars out of 5]
https://bit.ly/3fGRjLu
Understanding Data Engineering from Datacamp
https://clnk.in/soLY
Data Engineering Free Books
https://ia600201.us.archive.org/4/items/springer_10.1007-978-1-4419-0176-7/10.1007-978-1-4419-0176-7.pdf
https://www.darwinpricing.com/training/Data_Engineering_Cookbook.pdf
Big Data of Data Engineering Free book
https://databricks.com/wp-content/uploads/2021/10/Big-Book-of-Data-Engineering-Final.pdf
https://aimlcommunity.com/wp-content/uploads/2019/09/Data-Engineering.pdf
The Data Engineerโs Guide to Apache Spark
https://t.me/datasciencefun/783?single
Data Engineering with Python
https://t.me/pythondevelopersindia/343
Data Engineering Projects -
1.End-To-End From Web Scraping to Tableau https://lnkd.in/ePMw63ge
2. Building Data Model and Writing ETL Job https://lnkd.in/eq-e3_3J
3. Data Modeling and Analysis using Semantic Web Technologies https://lnkd.in/e4A86Ypq
4. ETL Project in Azure Data Factory - https://lnkd.in/eP8huQW3
5. ETL Pipeline on AWS Cloud - https://lnkd.in/ebgNtNRR
6. Covid Data Analysis Project - https://lnkd.in/eWZ3JfKD
7. YouTube Data Analysis
(End-To-End Data Engineering Project) - https://lnkd.in/eYJTEKwF
8. Twitter Data Pipeline using Airflow - https://lnkd.in/eNxHHZbY
9. Sentiment analysis Twitter:
Kafka and Spark Structured Streaming - https://lnkd.in/esVAaqtU
ENJOY LEARNING ๐๐
๐4
๐ฏ๐ฌ+ ๐๐ฟ๐ฒ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฒ๐ฑ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ฏ๐ ๐๐ฃ ๐๐๐๐ ๐๐ผ ๐ฆ๐๐ฝ๐ฒ๐ฟ๐ฐ๐ต๐ฎ๐ฟ๐ด๐ฒ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
Whether youโre a student, jobseeker, aspiring entrepreneur, or working professionalโHP LIFE offers the perfect opportunity to learn, grow, and earn certifications for free๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45ci02k
Join millions of learners worldwide who are already upgrading their skillsets through HP LIFEโ ๏ธ
Whether youโre a student, jobseeker, aspiring entrepreneur, or working professionalโHP LIFE offers the perfect opportunity to learn, grow, and earn certifications for free๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/45ci02k
Join millions of learners worldwide who are already upgrading their skillsets through HP LIFEโ ๏ธ
Data-Driven Decision Making
Data-driven decision-making (DDDM) involves using data analytics to guide business strategies instead of relying on intuition. Key techniques include A/B testing, forecasting, trend analysis, and KPI evaluation.
1๏ธโฃ A/B Testing & Hypothesis Testing
A/B testing compares two versions of a product, marketing campaign, or website feature to determine which performs better.
โ Key Metrics in A/B Testing:
Conversion Rate
Click-Through Rate (CTR)
Revenue per User
โ Steps in A/B Testing:
1. Define the hypothesis (e.g., "Changing the CTA button color will increase clicks").
2. Split users into Group A (control) and Group B (test).
3. Analyze differences using statistical tests.
โ SQL for A/B Testing:
Calculate average purchase per user in two test groups
Run a t-test to check statistical significance (Python)
๐น P-value < 0.05 โ Statistically significant difference.
๐น P-value > 0.05 โ No strong evidence of difference.
2๏ธโฃ Forecasting & Trend Analysis
Forecasting predicts future trends based on historical data.
โ Time Series Analysis Techniques:
Moving Averages (smooth trends)
Exponential Smoothing (weights recent data more)
ARIMA Models (AutoRegressive Integrated Moving Average)
โ SQL for Moving Averages:
7-day moving average of sales
โ Python for Forecasting (Using Prophet)
3๏ธโฃ KPI & Metrics Analysis
KPIs (Key Performance Indicators) measure business performance.
โ Common Business KPIs:
Revenue Growth Rate โ (Current Revenue - Previous Revenue) / Previous Revenue
Customer Retention Rate โ Customers at End / Customers at Start
Churn Rate โ % of customers lost over time
Net Promoter Score (NPS) โ Measures customer satisfaction
โ SQL for KPI Analysis:
Calculate Monthly Revenue Growth
โ Python for KPI Dashboard (Using Matplotlib)
4๏ธโฃ Real-Life Use Cases of Data-Driven Decisions
๐ E-commerce: Optimize pricing based on customer demand trends.
๐ Finance: Predict stock prices using time series forecasting.
๐ Marketing: Improve email campaign conversion rates with A/B testing.
๐ Healthcare: Identify disease patterns using predictive analytics.
Mini Task for You: Write an SQL query to calculate the customer churn rate for a subscription-based company.
Data Analyst Roadmap: ๐
https://t.me/sqlspecialist/1159
Like this post if you want me to continue covering all the topics! โค๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Data-driven decision-making (DDDM) involves using data analytics to guide business strategies instead of relying on intuition. Key techniques include A/B testing, forecasting, trend analysis, and KPI evaluation.
1๏ธโฃ A/B Testing & Hypothesis Testing
A/B testing compares two versions of a product, marketing campaign, or website feature to determine which performs better.
โ Key Metrics in A/B Testing:
Conversion Rate
Click-Through Rate (CTR)
Revenue per User
โ Steps in A/B Testing:
1. Define the hypothesis (e.g., "Changing the CTA button color will increase clicks").
2. Split users into Group A (control) and Group B (test).
3. Analyze differences using statistical tests.
โ SQL for A/B Testing:
Calculate average purchase per user in two test groups
SELECT test_group, AVG(purchase_amount) AS avg_purchase
FROM ab_test_results
GROUP BY test_group;
Run a t-test to check statistical significance (Python)
from scipy.stats import ttest_ind
t_stat, p_value = ttest_ind(group_A['conversion_rate'], group_B['conversion_rate'])
print(f"T-statistic: {t_stat}, P-value: {p_value}")
๐น P-value < 0.05 โ Statistically significant difference.
๐น P-value > 0.05 โ No strong evidence of difference.
2๏ธโฃ Forecasting & Trend Analysis
Forecasting predicts future trends based on historical data.
โ Time Series Analysis Techniques:
Moving Averages (smooth trends)
Exponential Smoothing (weights recent data more)
ARIMA Models (AutoRegressive Integrated Moving Average)
โ SQL for Moving Averages:
7-day moving average of sales
SELECT order_date,
sales,
AVG(sales) OVER (ORDER BY order_date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS moving_avg
FROM sales_data;
โ Python for Forecasting (Using Prophet)
from fbprophet import Prophet
model = Prophet()
model.fit(df)
future = model.make_future_dataframe(periods=30)
forecast = model.predict(future)
model.plot(forecast)
3๏ธโฃ KPI & Metrics Analysis
KPIs (Key Performance Indicators) measure business performance.
โ Common Business KPIs:
Revenue Growth Rate โ (Current Revenue - Previous Revenue) / Previous Revenue
Customer Retention Rate โ Customers at End / Customers at Start
Churn Rate โ % of customers lost over time
Net Promoter Score (NPS) โ Measures customer satisfaction
โ SQL for KPI Analysis:
Calculate Monthly Revenue Growth
SELECT month,
revenue,
LAG(revenue) OVER (ORDER BY month) AS prev_month_revenue,
(revenue - prev_month_revenue) / prev_month_revenue * 100 AS growth_rate
FROM revenue_data;
โ Python for KPI Dashboard (Using Matplotlib)
import matplotlib.pyplot as plt
plt.plot(df['month'], df['revenue_growth'], marker='o')
plt.title('Monthly Revenue Growth')
plt.xlabel('Month')
plt.ylabel('Growth Rate (%)')
plt.show()
4๏ธโฃ Real-Life Use Cases of Data-Driven Decisions
๐ E-commerce: Optimize pricing based on customer demand trends.
๐ Finance: Predict stock prices using time series forecasting.
๐ Marketing: Improve email campaign conversion rates with A/B testing.
๐ Healthcare: Identify disease patterns using predictive analytics.
Mini Task for You: Write an SQL query to calculate the customer churn rate for a subscription-based company.
Data Analyst Roadmap: ๐
https://t.me/sqlspecialist/1159
Like this post if you want me to continue covering all the topics! โค๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
โค3๐1
๐ฒ ๐๐ฅ๐๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐๐๐๐ฟ๐ฒ-๐ฃ๐ฟ๐ผ๐ผ๐ณ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Want to Stay Ahead in 2025? Learn These 6 In-Demand Skills for FREE!๐
The future of work is evolving fast, and mastering the right skills today can set you up for big success tomorrow๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FcwrZK
Enjoy Learning โ ๏ธ
Want to Stay Ahead in 2025? Learn These 6 In-Demand Skills for FREE!๐
The future of work is evolving fast, and mastering the right skills today can set you up for big success tomorrow๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FcwrZK
Enjoy Learning โ ๏ธ
Data Analyst vs Data Engineer: Must-Know Differences
Data Analyst:
- Role: Focuses on analyzing, interpreting, and visualizing data to extract insights that inform business decisions.
- Best For: Those who enjoy working directly with data to find patterns, trends, and actionable insights.
- Key Responsibilities:
- Collecting, cleaning, and organizing data.
- Using tools like Excel, Power BI, Tableau, and SQL to analyze data.
- Creating reports and dashboards to communicate insights to stakeholders.
- Collaborating with business teams to provide data-driven recommendations.
- Skills Required:
- Strong analytical skills and proficiency with data visualization tools.
- Expertise in SQL, Excel, and reporting tools.
- Familiarity with statistical analysis and business intelligence.
- Outcome: Data analysts focus on making sense of data to guide decision-making processes in business, marketing, finance, etc.
Data Engineer:
- Role: Focuses on designing, building, and maintaining the infrastructure that allows data to be stored, processed, and analyzed efficiently.
- Best For: Those who enjoy working with the technical aspects of data management and creating the architecture that supports large-scale data analysis.
- Key Responsibilities:
- Building and managing databases, data warehouses, and data pipelines.
- Developing and maintaining ETL (Extract, Transform, Load) processes to move data between systems.
- Ensuring data quality, accessibility, and security.
- Working with big data technologies like Hadoop, Spark, and cloud platforms (AWS, Azure, Google Cloud).
- Skills Required:
- Proficiency in programming languages like Python, Java, or Scala.
- Expertise in database management and big data tools.
- Strong understanding of data architecture and cloud technologies.
- Outcome: Data engineers focus on creating the infrastructure and pipelines that allow data to flow efficiently into systems where it can be analyzed by data analysts or data scientists.
Data analysts work with the data to extract insights and help make data-driven decisions, while data engineers build the systems and infrastructure that allow data to be stored, processed, and analyzed. Data analysts focus more on business outcomes, while data engineers are more involved with the technical foundation that supports data analysis.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.me/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
Data Analyst:
- Role: Focuses on analyzing, interpreting, and visualizing data to extract insights that inform business decisions.
- Best For: Those who enjoy working directly with data to find patterns, trends, and actionable insights.
- Key Responsibilities:
- Collecting, cleaning, and organizing data.
- Using tools like Excel, Power BI, Tableau, and SQL to analyze data.
- Creating reports and dashboards to communicate insights to stakeholders.
- Collaborating with business teams to provide data-driven recommendations.
- Skills Required:
- Strong analytical skills and proficiency with data visualization tools.
- Expertise in SQL, Excel, and reporting tools.
- Familiarity with statistical analysis and business intelligence.
- Outcome: Data analysts focus on making sense of data to guide decision-making processes in business, marketing, finance, etc.
Data Engineer:
- Role: Focuses on designing, building, and maintaining the infrastructure that allows data to be stored, processed, and analyzed efficiently.
- Best For: Those who enjoy working with the technical aspects of data management and creating the architecture that supports large-scale data analysis.
- Key Responsibilities:
- Building and managing databases, data warehouses, and data pipelines.
- Developing and maintaining ETL (Extract, Transform, Load) processes to move data between systems.
- Ensuring data quality, accessibility, and security.
- Working with big data technologies like Hadoop, Spark, and cloud platforms (AWS, Azure, Google Cloud).
- Skills Required:
- Proficiency in programming languages like Python, Java, or Scala.
- Expertise in database management and big data tools.
- Strong understanding of data architecture and cloud technologies.
- Outcome: Data engineers focus on creating the infrastructure and pipelines that allow data to flow efficiently into systems where it can be analyzed by data analysts or data scientists.
Data analysts work with the data to extract insights and help make data-driven decisions, while data engineers build the systems and infrastructure that allow data to be stored, processed, and analyzed. Data analysts focus more on business outcomes, while data engineers are more involved with the technical foundation that supports data analysis.
I have curated best 80+ top-notch Data Analytics Resources ๐๐
https://t.me/DataSimplifier
Like this post for more content like this ๐โฅ๏ธ
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
๐1
Forwarded from Artificial Intelligence
๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐ฃ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐๐ถ๐๐ ๐๐ถ๐๐ต ๐ง๐ต๐ถ๐ ๐๐ ๐ง๐ผ๐ผ๐น ๐๐๐ฒ๐ฟ๐ ๐๐ป๐ฎ๐น๐๐๐ ๐ก๐ฒ๐ฒ๐ฑ๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ!๐
Tired of Wasting Hours on SQL, Cleaning & Dashboards? Meet Your New Data Assistant!๐ฃ๐
If youโre a data analyst, BI developer, or even a student, you know the pain of spending hoursโฐ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jbJ9G5
Just smart automation that gives you time to focus on strategic decisions and storytellingโ ๏ธ
Tired of Wasting Hours on SQL, Cleaning & Dashboards? Meet Your New Data Assistant!๐ฃ๐
If youโre a data analyst, BI developer, or even a student, you know the pain of spending hoursโฐ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jbJ9G5
Just smart automation that gives you time to focus on strategic decisions and storytellingโ ๏ธ
SQL Cheatsheet ๐
This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether youโre a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.
1. Database Basics
-
-
2. Tables
- Create Table:
- Drop Table:
- Alter Table:
3. Insert Data
-
4. Select Queries
- Basic Select:
- Select Specific Columns:
- Select with Condition:
5. Update Data
-
6. Delete Data
-
7. Joins
- Inner Join:
- Left Join:
- Right Join:
8. Aggregations
- Count:
- Sum:
- Group By:
9. Sorting & Limiting
- Order By:
- Limit Results:
10. Indexes
- Create Index:
- Drop Index:
11. Subqueries
-
12. Views
- Create View:
- Drop View:
Here you can find SQL Interview Resources๐
https://t.me/DataSimplifier
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether youโre a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.
1. Database Basics
-
CREATE DATABASE db_name;
-
USE db_name;
2. Tables
- Create Table:
CREATE TABLE table_name (col1 datatype, col2 datatype);
- Drop Table:
DROP TABLE table_name;
- Alter Table:
ALTER TABLE table_name ADD column_name datatype;
3. Insert Data
-
INSERT INTO table_name (col1, col2) VALUES (val1, val2);
4. Select Queries
- Basic Select:
SELECT * FROM table_name;
- Select Specific Columns:
SELECT col1, col2 FROM table_name;
- Select with Condition:
SELECT * FROM table_name WHERE condition;
5. Update Data
-
UPDATE table_name SET col1 = value1 WHERE condition;
6. Delete Data
-
DELETE FROM table_name WHERE condition;
7. Joins
- Inner Join:
SELECT * FROM table1 INNER JOIN table2 ON table1.col = table2.col;
- Left Join:
SELECT * FROM table1 LEFT JOIN table2 ON table1.col = table2.col;
- Right Join:
SELECT * FROM table1 RIGHT JOIN table2 ON table1.col = table2.col;
8. Aggregations
- Count:
SELECT COUNT(*) FROM table_name;
- Sum:
SELECT SUM(col) FROM table_name;
- Group By:
SELECT col, COUNT(*) FROM table_name GROUP BY col;
9. Sorting & Limiting
- Order By:
SELECT * FROM table_name ORDER BY col ASC|DESC;
- Limit Results:
SELECT * FROM table_name LIMIT n;
10. Indexes
- Create Index:
CREATE INDEX idx_name ON table_name (col);
- Drop Index:
DROP INDEX idx_name;
11. Subqueries
-
SELECT * FROM table_name WHERE col IN (SELECT col FROM other_table);
12. Views
- Create View:
CREATE VIEW view_name AS SELECT * FROM table_name;
- Drop View:
DROP VIEW view_name;
Here you can find SQL Interview Resources๐
https://t.me/DataSimplifier
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
๐1
Forwarded from Artificial Intelligence
๐๐ฟ๐ฒ๐ฒ ๐ข๐ฟ๐ฎ๐ฐ๐น๐ฒ ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
Hereโs your chance to build a solid foundation in artificial intelligence with the Oracle AI Foundations Associate course โ absolutely FREE!๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FfFOrC
No registration fee. No prior AI experience needed. Just pure learning to future-proof your career!โ ๏ธ
Hereโs your chance to build a solid foundation in artificial intelligence with the Oracle AI Foundations Associate course โ absolutely FREE!๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FfFOrC
No registration fee. No prior AI experience needed. Just pure learning to future-proof your career!โ ๏ธ
๐1
Forwarded from Artificial Intelligence
๐ณ+ ๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐ผ๐ด๐น๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
Hereโs your golden chance to upskill with free, industry-recognized certifications from Googleโall without spending a rupee!๐ฐ๐
These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and moreโฌ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3H2YJX7
Tag them or share this post!โ ๏ธ
Hereโs your golden chance to upskill with free, industry-recognized certifications from Googleโall without spending a rupee!๐ฐ๐
These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and moreโฌ๏ธ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3H2YJX7
Tag them or share this post!โ ๏ธ
โ
๐-๐๐ญ๐๐ฉ ๐๐จ๐๐๐ฆ๐๐ฉ ๐ญ๐จ ๐๐ฐ๐ข๐ญ๐๐ก ๐ข๐ง๐ญ๐จ ๐ญ๐ก๐ ๐๐๐ญ๐ ๐๐ง๐๐ฅ๐ฒ๐ญ๐ข๐๐ฌ ๐
๐ข๐๐ฅ๐โ
๐โโ๏ธ๐๐ฎ๐ข๐ฅ๐ ๐๐๐ฒ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Focus on core skillsโExcel, SQL, Power BI, and Python.
๐โโ๏ธ๐๐๐ง๐๐ฌ-๐๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Apply your skills to real-world data sets. Projects like sales analysis or customer segmentation show your practical experience. You can find projects on Youtube.
๐โโ๏ธ๐ ๐ข๐ง๐ ๐ ๐๐๐ง๐ญ๐จ๐ซ: Connect with someone experienced in data analytics for guidance(like me ๐ ). They can provide valuable insights, feedback, and keep you on track.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ ๐๐จ๐ซ๐ญ๐๐จ๐ฅ๐ข๐จ: Compile your projects in a portfolio or on GitHub. A solid portfolio catches a recruiterโs eye.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ข๐๐ ๐๐จ๐ซ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ๐ฌ: Practice SQL queries and Python coding challenges on Hackerrank & LeetCode. Strengthening your problem-solving skills will prepare you for interviews.
๐โโ๏ธ๐๐ฎ๐ข๐ฅ๐ ๐๐๐ฒ ๐๐ค๐ข๐ฅ๐ฅ๐ฌ: Focus on core skillsโExcel, SQL, Power BI, and Python.
๐โโ๏ธ๐๐๐ง๐๐ฌ-๐๐ง ๐๐ซ๐จ๐ฃ๐๐๐ญ๐ฌ: Apply your skills to real-world data sets. Projects like sales analysis or customer segmentation show your practical experience. You can find projects on Youtube.
๐โโ๏ธ๐ ๐ข๐ง๐ ๐ ๐๐๐ง๐ญ๐จ๐ซ: Connect with someone experienced in data analytics for guidance(like me ๐ ). They can provide valuable insights, feedback, and keep you on track.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ ๐๐จ๐ซ๐ญ๐๐จ๐ฅ๐ข๐จ: Compile your projects in a portfolio or on GitHub. A solid portfolio catches a recruiterโs eye.
๐โโ๏ธ๐๐ซ๐๐๐ญ๐ข๐๐ ๐๐จ๐ซ ๐๐ง๐ญ๐๐ซ๐ฏ๐ข๐๐ฐ๐ฌ: Practice SQL queries and Python coding challenges on Hackerrank & LeetCode. Strengthening your problem-solving skills will prepare you for interviews.
๐1
๐ฒ ๐๐ฅ๐๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐ฃ๐๐๐ต๐ผ๐ป, ๐ฆ๐ค๐ & ๐ ๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Looking to break into data analytics, data science, or machine learning this year?๐ป
These 6 free online courses from world-class universities and tech giants like Harvard, Stanford, MIT, Google, and IBM will help you build a job-ready skillset๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ksUTFi
Enjoy Learning โ ๏ธ
Looking to break into data analytics, data science, or machine learning this year?๐ป
These 6 free online courses from world-class universities and tech giants like Harvard, Stanford, MIT, Google, and IBM will help you build a job-ready skillset๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4ksUTFi
Enjoy Learning โ ๏ธ
ML Engineer vs AI Engineer
ML Engineer / MLOps
-Focuses on the deployment of machine learning models.
-Bridges the gap between data scientists and production environments.
-Designing and implementing machine learning models into production.
-Automating and orchestrating ML workflows and pipelines.
-Ensuring reproducibility, scalability, and reliability of ML models.
-Programming: Python, R, Java
-Libraries: TensorFlow, PyTorch, Scikit-learn
-MLOps: MLflow, Kubeflow, Docker, Kubernetes, Git, Jenkins, CI/CD tools
AI Engineer / Developer
- Applying AI techniques to solve specific problems.
- Deep knowledge of AI algorithms and their applications.
- Developing and implementing AI models and systems.
- Building and integrating AI solutions into existing applications.
- Collaborating with cross-functional teams to understand requirements and deliver AI-powered solutions.
- Programming: Python, Java, C++
- Libraries: TensorFlow, PyTorch, Keras, OpenCV
- Frameworks: ONNX, Hugging Face
ML Engineer / MLOps
-Focuses on the deployment of machine learning models.
-Bridges the gap between data scientists and production environments.
-Designing and implementing machine learning models into production.
-Automating and orchestrating ML workflows and pipelines.
-Ensuring reproducibility, scalability, and reliability of ML models.
-Programming: Python, R, Java
-Libraries: TensorFlow, PyTorch, Scikit-learn
-MLOps: MLflow, Kubeflow, Docker, Kubernetes, Git, Jenkins, CI/CD tools
AI Engineer / Developer
- Applying AI techniques to solve specific problems.
- Deep knowledge of AI algorithms and their applications.
- Developing and implementing AI models and systems.
- Building and integrating AI solutions into existing applications.
- Collaborating with cross-functional teams to understand requirements and deliver AI-powered solutions.
- Programming: Python, Java, C++
- Libraries: TensorFlow, PyTorch, Keras, OpenCV
- Frameworks: ONNX, Hugging Face
๐1
Forwarded from Python Projects & Resources
๐ฑ ๐ฃ๐ผ๐๐ฒ๐ฟ๐ณ๐๐น ๐ฃ๐๐๐ต๐ผ๐ป ๐ฃ๐ฟ๐ผ๐ท๐ฒ๐ฐ๐๐ ๐๐ผ ๐๐ฑ๐ฑ ๐๐ผ ๐ฌ๐ผ๐๐ฟ ๐ฅ๐ฒ๐๐๐บ๐ฒ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Looking to land an internship, secure a tech job, or start freelancing in 2025?๐จโ๐ป
Python projects are one of the best ways to showcase your skills and stand out in todayโs competitive job market๐ฃ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kvrfiL
Stand out in todayโs competitive job marketโ ๏ธ
Looking to land an internship, secure a tech job, or start freelancing in 2025?๐จโ๐ป
Python projects are one of the best ways to showcase your skills and stand out in todayโs competitive job market๐ฃ๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4kvrfiL
Stand out in todayโs competitive job marketโ ๏ธ
Here are few Important SQL interview questions with topics
Basic SQL Concepts:
Explain the difference between SQL and NoSQL databases.
What are the common data types in SQL?
Querying:
How do you retrieve all records from a table named "Customers"?
What is the difference between SELECT and SELECT DISTINCT in a query?
Explain the purpose of the WHERE clause in SQL queries.
Joins:
Describe the types of joins in SQL (INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN).
How would you retrieve data from two tables using an INNER JOIN?
Aggregate Functions:
What are aggregate functions in SQL? Can you name a few?
How do you calculate the average, sum, and count of a column in a SQL query?
Grouping and Filtering:
Explain the GROUP BY clause and its use in SQL.
How would you filter the results of an SQL query using the HAVING clause?
Subqueries:
What is a subquery, and when would you use one in SQL?
Provide an example of a subquery in an SQL statement.
Indexes and Optimization:
Why are indexes important in a database?
How would you optimize a slow-running SQL query?
Normalization and Data Integrity:
What is database normalization, and why is it important?
How can you enforce data integrity in a SQL database?
Transactions:
What is a SQL transaction, and why would you use it?
Explain the concepts of ACID properties in database transactions.
Views and Stored Procedures:
What is a database view, and when would you create one?
What is a stored procedure, and how does it differ from a regular SQL query?
Advanced SQL:
Can you write a recursive SQL query, and when would you use recursion?
Explain the concept of window functions in SQL.
These questions cover a range of SQL topics, from basic concepts to more advanced techniques, and can help assess a candidate's knowledge and skills in SQL :)
Like this post if you need more ๐โค๏ธ
Hope it helps :)
Basic SQL Concepts:
Explain the difference between SQL and NoSQL databases.
What are the common data types in SQL?
Querying:
How do you retrieve all records from a table named "Customers"?
What is the difference between SELECT and SELECT DISTINCT in a query?
Explain the purpose of the WHERE clause in SQL queries.
Joins:
Describe the types of joins in SQL (INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN).
How would you retrieve data from two tables using an INNER JOIN?
Aggregate Functions:
What are aggregate functions in SQL? Can you name a few?
How do you calculate the average, sum, and count of a column in a SQL query?
Grouping and Filtering:
Explain the GROUP BY clause and its use in SQL.
How would you filter the results of an SQL query using the HAVING clause?
Subqueries:
What is a subquery, and when would you use one in SQL?
Provide an example of a subquery in an SQL statement.
Indexes and Optimization:
Why are indexes important in a database?
How would you optimize a slow-running SQL query?
Normalization and Data Integrity:
What is database normalization, and why is it important?
How can you enforce data integrity in a SQL database?
Transactions:
What is a SQL transaction, and why would you use it?
Explain the concepts of ACID properties in database transactions.
Views and Stored Procedures:
What is a database view, and when would you create one?
What is a stored procedure, and how does it differ from a regular SQL query?
Advanced SQL:
Can you write a recursive SQL query, and when would you use recursion?
Explain the concept of window functions in SQL.
These questions cover a range of SQL topics, from basic concepts to more advanced techniques, and can help assess a candidate's knowledge and skills in SQL :)
Like this post if you need more ๐โค๏ธ
Hope it helps :)
๐1
Forwarded from Artificial Intelligence
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ถ๐ฐ๐ธ๐๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ (๐ช๐ถ๐๐ต ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ฒ๐!)๐
Start Here โ With Zero Cost and Maximum Value!๐ฐ๐
If youโre aiming for a career in data analytics, now is the perfect time to get started๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Fq7E4p
A great starting point if youโre brand new to the fieldโ ๏ธ
Start Here โ With Zero Cost and Maximum Value!๐ฐ๐
If youโre aiming for a career in data analytics, now is the perfect time to get started๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3Fq7E4p
A great starting point if youโre brand new to the fieldโ ๏ธ
1. How to change a table name in SQL?
This is the command to change a table name in SQL:
ALTER TABLE table_name
RENAME TO new_table_name;
We will start off by giving the keywords ALTER TABLE, then we will follow it up by giving the original name of the table, after that, we will give in the keywords RENAME TO and finally, we will give the new table name.
2. How to use LIKE in SQL?
The LIKE operator checks if an attribute value matches a given string pattern. Here is an example of LIKE operator
SELECT * FROM employees WHERE first_name like โStevenโ;
With this command, we will be able to extract all the records where the first name is like โStevenโ.
3. If we drop a table, does it also drop related objects like constraints, indexes, columns, default, views and sorted procedures?
Yes, SQL server drops all related objects, which exists inside a table like constraints, indexes, columns, defaults etc. But dropping a table will not drop views and sorted procedures as they exist outside the table.
4. Explain SQL Constraints.
SQL Constraints are used to specify the rules of data type in a table. They can be specified while creating and altering the table. The following are the constraints in SQL: NOT NULL CHECK DEFAULT UNIQUE PRIMARY KEY FOREIGN KEY
This is the command to change a table name in SQL:
ALTER TABLE table_name
RENAME TO new_table_name;
We will start off by giving the keywords ALTER TABLE, then we will follow it up by giving the original name of the table, after that, we will give in the keywords RENAME TO and finally, we will give the new table name.
2. How to use LIKE in SQL?
The LIKE operator checks if an attribute value matches a given string pattern. Here is an example of LIKE operator
SELECT * FROM employees WHERE first_name like โStevenโ;
With this command, we will be able to extract all the records where the first name is like โStevenโ.
3. If we drop a table, does it also drop related objects like constraints, indexes, columns, default, views and sorted procedures?
Yes, SQL server drops all related objects, which exists inside a table like constraints, indexes, columns, defaults etc. But dropping a table will not drop views and sorted procedures as they exist outside the table.
4. Explain SQL Constraints.
SQL Constraints are used to specify the rules of data type in a table. They can be specified while creating and altering the table. The following are the constraints in SQL: NOT NULL CHECK DEFAULT UNIQUE PRIMARY KEY FOREIGN KEY
๐2
๐ฏ ๐๐ฟ๐ฒ๐ฒ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ ๐๐๐๐ฟ๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฃ๐ฎ๐๐ต๐ ๐๐ผ ๐ ๐ฎ๐๐๐ฒ๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ๐ถ๐ป๐ด๐
๐ Ready to Dive Into the World of Data Engineering and Analytics?๐
If youโre planning to enter the field of data engineering or want to level up your cloud-based analytics skills, Microsoft Azure has just what you need โ for free!๐จโ๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3ZoW2Fy
Enjoy Learning โ ๏ธ
๐ Ready to Dive Into the World of Data Engineering and Analytics?๐
If youโre planning to enter the field of data engineering or want to level up your cloud-based analytics skills, Microsoft Azure has just what you need โ for free!๐จโ๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3ZoW2Fy
Enjoy Learning โ ๏ธ
๐๐ฟ๐ฒ๐ฒ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐๐ถ๐ฐ๐ธ๐๐๐ฎ๐ฟ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐๐ผ๐๐ฟ๐ป๐ฒ๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Ready to upskill in data science for free?๐
Here are 3 amazing courses to build a strong foundation in Exploratory Data Analysis, SQL, and Python๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43GspSO
Take the first step towards your dream career!โ ๏ธ
Ready to upskill in data science for free?๐
Here are 3 amazing courses to build a strong foundation in Exploratory Data Analysis, SQL, and Python๐จโ๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/43GspSO
Take the first step towards your dream career!โ ๏ธ
Beyond Data Analytics: Expanding Your Career Horizons
Once you've mastered core and advanced analytics skills, it's time to explore career growth opportunities beyond traditional data analyst roles. Here are some potential paths:
1๏ธโฃ Data Science & AI Specialist ๐ค
Dive deeper into machine learning, deep learning, and AI-powered analytics.
Learn advanced Python libraries like TensorFlow, PyTorch, and Scikit-Learn.
Work on predictive modeling, NLP, and AI automation.
2๏ธโฃ Data Engineering ๐๏ธ
Shift towards building scalable data infrastructure.
Master ETL pipelines, cloud databases (BigQuery, Snowflake, Redshift), and Apache Spark.
Learn Docker, Kubernetes, and Airflow for workflow automation.
3๏ธโฃ Business Intelligence & Data Strategy ๐
Transition into high-level decision-making roles.
Become a BI Consultant or Data Strategist, focusing on storytelling and business impact.
Lead data-driven transformation projects in organizations.
4๏ธโฃ Product Analytics & Growth Strategy ๐
Work closely with product managers to optimize user experience and engagement.
Use A/B testing, cohort analysis, and customer segmentation to drive product decisions.
Learn Mixpanel, Amplitude, and Google Analytics.
5๏ธโฃ Data Governance & Privacy Expert ๐
Specialize in data compliance, security, and ethical AI.
Learn about GDPR, CCPA, and industry regulations.
Work on data quality, lineage, and metadata management.
6๏ธโฃ AI-Powered Automation & No-Code Analytics ๐
Explore AutoML tools, AI-assisted analytics, and no-code platforms like Alteryx and DataRobot.
Automate repetitive tasks and create self-service analytics solutions for businesses.
7๏ธโฃ Freelancing & Consulting ๐ผ
Offer data analytics services as an independent consultant.
Build a personal brand through LinkedIn, Medium, or YouTube.
Monetize your expertise via online courses, coaching, or workshops.
8๏ธโฃ Transitioning to Leadership Roles
Become a Data Science Manager, Head of Analytics, or Chief Data Officer.
Focus on mentoring teams, driving data strategy, and influencing business decisions.
Develop stakeholder management, communication, and leadership skills.
Mastering data analytics opens up multiple career pathwaysโwhether in AI, business strategy, engineering, or leadership. Choose your path, keep learning, and stay ahead of industry trends! ๐
#dataanalytics
Once you've mastered core and advanced analytics skills, it's time to explore career growth opportunities beyond traditional data analyst roles. Here are some potential paths:
1๏ธโฃ Data Science & AI Specialist ๐ค
Dive deeper into machine learning, deep learning, and AI-powered analytics.
Learn advanced Python libraries like TensorFlow, PyTorch, and Scikit-Learn.
Work on predictive modeling, NLP, and AI automation.
2๏ธโฃ Data Engineering ๐๏ธ
Shift towards building scalable data infrastructure.
Master ETL pipelines, cloud databases (BigQuery, Snowflake, Redshift), and Apache Spark.
Learn Docker, Kubernetes, and Airflow for workflow automation.
3๏ธโฃ Business Intelligence & Data Strategy ๐
Transition into high-level decision-making roles.
Become a BI Consultant or Data Strategist, focusing on storytelling and business impact.
Lead data-driven transformation projects in organizations.
4๏ธโฃ Product Analytics & Growth Strategy ๐
Work closely with product managers to optimize user experience and engagement.
Use A/B testing, cohort analysis, and customer segmentation to drive product decisions.
Learn Mixpanel, Amplitude, and Google Analytics.
5๏ธโฃ Data Governance & Privacy Expert ๐
Specialize in data compliance, security, and ethical AI.
Learn about GDPR, CCPA, and industry regulations.
Work on data quality, lineage, and metadata management.
6๏ธโฃ AI-Powered Automation & No-Code Analytics ๐
Explore AutoML tools, AI-assisted analytics, and no-code platforms like Alteryx and DataRobot.
Automate repetitive tasks and create self-service analytics solutions for businesses.
7๏ธโฃ Freelancing & Consulting ๐ผ
Offer data analytics services as an independent consultant.
Build a personal brand through LinkedIn, Medium, or YouTube.
Monetize your expertise via online courses, coaching, or workshops.
8๏ธโฃ Transitioning to Leadership Roles
Become a Data Science Manager, Head of Analytics, or Chief Data Officer.
Focus on mentoring teams, driving data strategy, and influencing business decisions.
Develop stakeholder management, communication, and leadership skills.
Mastering data analytics opens up multiple career pathwaysโwhether in AI, business strategy, engineering, or leadership. Choose your path, keep learning, and stay ahead of industry trends! ๐
#dataanalytics
๐1
๐ฏ ๐๐ฟ๐ฒ๐ฒ ๐ข๐ฟ๐ฎ๐ฐ๐น๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ผ ๐๐๐๐๐ฟ๐ฒ-๐ฃ๐ฟ๐ผ๐ผ๐ณ ๐ฌ๐ผ๐๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Oracle, one of the worldโs most trusted tech giants, offers free training and globally recognized certifications to help you build expertise in cloud computing, Java, and enterprise applications.๐จโ๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GZZUXi
All at zero cost!๐โ ๏ธ
Oracle, one of the worldโs most trusted tech giants, offers free training and globally recognized certifications to help you build expertise in cloud computing, Java, and enterprise applications.๐จโ๐๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GZZUXi
All at zero cost!๐โ ๏ธ
๐ฅ1