Data Engineers
8.79K subscribers
342 photos
74 files
333 links
Free Data Engineering Ebooks & Courses
Download Telegram
FREE RESOURCES TO LEARN DATA ENGINEERING
๐Ÿ‘‡๐Ÿ‘‡

Big Data and Hadoop Essentials free course

https://bit.ly/3rLxbul

Data Engineer: Prepare Financial Data for ML and Backtesting FREE UDEMY COURSE
[4.6 stars out of 5]

https://bit.ly/3fGRjLu

Understanding Data Engineering from Datacamp

https://clnk.in/soLY

Data Engineering Free Books

https://ia600201.us.archive.org/4/items/springer_10.1007-978-1-4419-0176-7/10.1007-978-1-4419-0176-7.pdf

https://www.darwinpricing.com/training/Data_Engineering_Cookbook.pdf

Big Data of Data Engineering Free book

https://databricks.com/wp-content/uploads/2021/10/Big-Book-of-Data-Engineering-Final.pdf

https://aimlcommunity.com/wp-content/uploads/2019/09/Data-Engineering.pdf

The Data Engineerโ€™s Guide to Apache Spark

https://t.me/datasciencefun/783?single

Data Engineering with Python

https://t.me/pythondevelopersindia/343

Data Engineering Projects -

1.End-To-End From Web Scraping to Tableau  https://lnkd.in/ePMw63ge

2. Building Data Model and Writing ETL Job https://lnkd.in/eq-e3_3J

3. Data Modeling and Analysis using Semantic Web Technologies https://lnkd.in/e4A86Ypq

4. ETL Project in Azure Data Factory - https://lnkd.in/eP8huQW3

5. ETL Pipeline on AWS Cloud - https://lnkd.in/ebgNtNRR

6. Covid Data Analysis Project - https://lnkd.in/eWZ3JfKD

7. YouTube Data Analysis 
   (End-To-End Data Engineering Project) - https://lnkd.in/eYJTEKwF

8. Twitter Data Pipeline using Airflow - https://lnkd.in/eNxHHZbY

9. Sentiment analysis Twitter:
    Kafka and Spark Structured Streaming -  https://lnkd.in/esVAaqtU

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘4
๐Ÿฏ๐Ÿฌ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฒ๐—ฑ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ฏ๐˜† ๐—›๐—ฃ ๐—Ÿ๐—œ๐—™๐—˜ ๐˜๐—ผ ๐—ฆ๐˜‚๐—ฝ๐—ฒ๐—ฟ๐—ฐ๐—ต๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

Whether youโ€™re a student, jobseeker, aspiring entrepreneur, or working professionalโ€”HP LIFE offers the perfect opportunity to learn, grow, and earn certifications for free๐Ÿ“Š๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45ci02k

Join millions of learners worldwide who are already upgrading their skillsets through HP LIFEโœ…๏ธ
Data-Driven Decision Making

Data-driven decision-making (DDDM) involves using data analytics to guide business strategies instead of relying on intuition. Key techniques include A/B testing, forecasting, trend analysis, and KPI evaluation.

1๏ธโƒฃ A/B Testing & Hypothesis Testing

A/B testing compares two versions of a product, marketing campaign, or website feature to determine which performs better.

โœ” Key Metrics in A/B Testing:

Conversion Rate

Click-Through Rate (CTR)

Revenue per User


โœ” Steps in A/B Testing:

1. Define the hypothesis (e.g., "Changing the CTA button color will increase clicks").


2. Split users into Group A (control) and Group B (test).


3. Analyze differences using statistical tests.



โœ” SQL for A/B Testing:

Calculate average purchase per user in two test groups

SELECT test_group, AVG(purchase_amount) AS avg_purchase  
FROM ab_test_results
GROUP BY test_group;


Run a t-test to check statistical significance (Python)

from scipy.stats import ttest_ind
t_stat, p_value = ttest_ind(group_A['conversion_rate'], group_B['conversion_rate'])
print(f"T-statistic: {t_stat}, P-value: {p_value}")


๐Ÿ”น P-value < 0.05 โ†’ Statistically significant difference.
๐Ÿ”น P-value > 0.05 โ†’ No strong evidence of difference.


2๏ธโƒฃ Forecasting & Trend Analysis

Forecasting predicts future trends based on historical data.

โœ” Time Series Analysis Techniques:

Moving Averages (smooth trends)

Exponential Smoothing (weights recent data more)

ARIMA Models (AutoRegressive Integrated Moving Average)


โœ” SQL for Moving Averages:

7-day moving average of sales

SELECT order_date,  
sales,
AVG(sales) OVER (ORDER BY order_date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS moving_avg
FROM sales_data;


โœ” Python for Forecasting (Using Prophet)

from fbprophet import Prophet
model = Prophet()
model.fit(df)
future = model.make_future_dataframe(periods=30)
forecast = model.predict(future)
model.plot(forecast)


3๏ธโƒฃ KPI & Metrics Analysis

KPIs (Key Performance Indicators) measure business performance.

โœ” Common Business KPIs:

Revenue Growth Rate โ†’ (Current Revenue - Previous Revenue) / Previous Revenue

Customer Retention Rate โ†’ Customers at End / Customers at Start

Churn Rate โ†’ % of customers lost over time

Net Promoter Score (NPS) โ†’ Measures customer satisfaction


โœ” SQL for KPI Analysis:

Calculate Monthly Revenue Growth

SELECT month,  
revenue,
LAG(revenue) OVER (ORDER BY month) AS prev_month_revenue,
(revenue - prev_month_revenue) / prev_month_revenue * 100 AS growth_rate
FROM revenue_data;


โœ” Python for KPI Dashboard (Using Matplotlib)

import matplotlib.pyplot as plt
plt.plot(df['month'], df['revenue_growth'], marker='o')
plt.title('Monthly Revenue Growth')
plt.xlabel('Month')
plt.ylabel('Growth Rate (%)')
plt.show()


4๏ธโƒฃ Real-Life Use Cases of Data-Driven Decisions

๐Ÿ“Œ E-commerce: Optimize pricing based on customer demand trends.
๐Ÿ“Œ Finance: Predict stock prices using time series forecasting.
๐Ÿ“Œ Marketing: Improve email campaign conversion rates with A/B testing.
๐Ÿ“Œ Healthcare: Identify disease patterns using predictive analytics.


Mini Task for You: Write an SQL query to calculate the customer churn rate for a subscription-based company.

Data Analyst Roadmap: ๐Ÿ‘‡
https://t.me/sqlspecialist/1159

Like this post if you want me to continue covering all the topics! โค๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
โค3๐Ÿ‘1
๐Ÿฒ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐˜‚๐˜๐˜‚๐—ฟ๐—ฒ-๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Want to Stay Ahead in 2025? Learn These 6 In-Demand Skills for FREE!๐Ÿš€

The future of work is evolving fast, and mastering the right skills today can set you up for big success tomorrow๐ŸŽฏ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3FcwrZK

Enjoy Learning โœ…๏ธ
Data Analyst vs Data Engineer: Must-Know Differences

Data Analyst:
- Role: Focuses on analyzing, interpreting, and visualizing data to extract insights that inform business decisions.
- Best For: Those who enjoy working directly with data to find patterns, trends, and actionable insights.
- Key Responsibilities:
- Collecting, cleaning, and organizing data.
- Using tools like Excel, Power BI, Tableau, and SQL to analyze data.
- Creating reports and dashboards to communicate insights to stakeholders.
- Collaborating with business teams to provide data-driven recommendations.
- Skills Required:
- Strong analytical skills and proficiency with data visualization tools.
- Expertise in SQL, Excel, and reporting tools.
- Familiarity with statistical analysis and business intelligence.
- Outcome: Data analysts focus on making sense of data to guide decision-making processes in business, marketing, finance, etc.

Data Engineer:
- Role: Focuses on designing, building, and maintaining the infrastructure that allows data to be stored, processed, and analyzed efficiently.
- Best For: Those who enjoy working with the technical aspects of data management and creating the architecture that supports large-scale data analysis.
- Key Responsibilities:
- Building and managing databases, data warehouses, and data pipelines.
- Developing and maintaining ETL (Extract, Transform, Load) processes to move data between systems.
- Ensuring data quality, accessibility, and security.
- Working with big data technologies like Hadoop, Spark, and cloud platforms (AWS, Azure, Google Cloud).
- Skills Required:
- Proficiency in programming languages like Python, Java, or Scala.
- Expertise in database management and big data tools.
- Strong understanding of data architecture and cloud technologies.
- Outcome: Data engineers focus on creating the infrastructure and pipelines that allow data to flow efficiently into systems where it can be analyzed by data analysts or data scientists.

Data analysts work with the data to extract insights and help make data-driven decisions, while data engineers build the systems and infrastructure that allow data to be stored, processed, and analyzed. Data analysts focus more on business outcomes, while data engineers are more involved with the technical foundation that supports data analysis.

I have curated best 80+ top-notch Data Analytics Resources ๐Ÿ‘‡๐Ÿ‘‡
https://t.me/DataSimplifier

Like this post for more content like this ๐Ÿ‘โ™ฅ๏ธ

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘1
Forwarded from Artificial Intelligence
๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฃ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐˜ƒ๐—ถ๐˜๐˜† ๐˜„๐—ถ๐˜๐—ต ๐—ง๐—ต๐—ถ๐˜€ ๐—”๐—œ ๐—ง๐—ผ๐—ผ๐—น ๐—˜๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐—ก๐—ฒ๐—ฒ๐—ฑ๐˜€ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ!๐Ÿ˜

Tired of Wasting Hours on SQL, Cleaning & Dashboards? Meet Your New Data Assistant!๐Ÿ—ฃ๐Ÿš€

If youโ€™re a data analyst, BI developer, or even a student, you know the pain of spending hoursโฐ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4jbJ9G5

Just smart automation that gives you time to focus on strategic decisions and storytellingโœ…๏ธ
SQL Cheatsheet ๐Ÿ“

This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether youโ€™re a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.

1. Database Basics
- CREATE DATABASE db_name;
- USE db_name;

2. Tables
- Create Table: CREATE TABLE table_name (col1 datatype, col2 datatype);
- Drop Table: DROP TABLE table_name;
- Alter Table: ALTER TABLE table_name ADD column_name datatype;

3. Insert Data
- INSERT INTO table_name (col1, col2) VALUES (val1, val2);

4. Select Queries
- Basic Select: SELECT * FROM table_name;
- Select Specific Columns: SELECT col1, col2 FROM table_name;
- Select with Condition: SELECT * FROM table_name WHERE condition;

5. Update Data
- UPDATE table_name SET col1 = value1 WHERE condition;

6. Delete Data
- DELETE FROM table_name WHERE condition;

7. Joins
- Inner Join: SELECT * FROM table1 INNER JOIN table2 ON table1.col = table2.col;
- Left Join: SELECT * FROM table1 LEFT JOIN table2 ON table1.col = table2.col;
- Right Join: SELECT * FROM table1 RIGHT JOIN table2 ON table1.col = table2.col;

8. Aggregations
- Count: SELECT COUNT(*) FROM table_name;
- Sum: SELECT SUM(col) FROM table_name;
- Group By: SELECT col, COUNT(*) FROM table_name GROUP BY col;

9. Sorting & Limiting
- Order By: SELECT * FROM table_name ORDER BY col ASC|DESC;
- Limit Results: SELECT * FROM table_name LIMIT n;

10. Indexes
- Create Index: CREATE INDEX idx_name ON table_name (col);
- Drop Index: DROP INDEX idx_name;

11. Subqueries
- SELECT * FROM table_name WHERE col IN (SELECT col FROM other_table);

12. Views
- Create View: CREATE VIEW view_name AS SELECT * FROM table_name;
- Drop View: DROP VIEW view_name;

Here you can find SQL Interview Resources๐Ÿ‘‡
https://t.me/DataSimplifier

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
๐Ÿ‘1
Forwarded from Artificial Intelligence
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ข๐—ฟ๐—ฎ๐—ฐ๐—น๐—ฒ ๐—”๐—œ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

Hereโ€™s your chance to build a solid foundation in artificial intelligence with the Oracle AI Foundations Associate course โ€” absolutely FREE!๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3FfFOrC

No registration fee. No prior AI experience needed. Just pure learning to future-proof your career!โœ…๏ธ
๐Ÿ‘1
Forwarded from Artificial Intelligence
๐Ÿณ+ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—•๐—ผ๐—ผ๐˜€๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ๐Ÿ˜

Hereโ€™s your golden chance to upskill with free, industry-recognized certifications from Googleโ€”all without spending a rupee!๐Ÿ’ฐ๐Ÿ“Œ

These beginner-friendly courses cover everything from digital marketing to data tools like Google Ads, Analytics, and moreโฌ‡๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3H2YJX7

Tag them or share this post!โœ…๏ธ
โœ…๐Ÿ“-๐’๐ญ๐ž๐ฉ ๐‘๐จ๐š๐๐ฆ๐š๐ฉ ๐ญ๐จ ๐’๐ฐ๐ข๐ญ๐œ๐ก ๐ข๐ง๐ญ๐จ ๐ญ๐ก๐ž ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ญ๐ข๐œ๐ฌ ๐…๐ข๐ž๐ฅ๐โœ…

๐Ÿ’โ€โ™€๏ธ๐๐ฎ๐ข๐ฅ๐ ๐Š๐ž๐ฒ ๐’๐ค๐ข๐ฅ๐ฅ๐ฌ: Focus on core skillsโ€”Excel, SQL, Power BI, and Python.

๐Ÿ’โ€โ™€๏ธ๐‡๐š๐ง๐๐ฌ-๐Ž๐ง ๐๐ซ๐จ๐ฃ๐ž๐œ๐ญ๐ฌ: Apply your skills to real-world data sets. Projects like sales analysis or customer segmentation show your practical experience. You can find projects on Youtube.

๐Ÿ’โ€โ™€๏ธ๐…๐ข๐ง๐ ๐š ๐Œ๐ž๐ง๐ญ๐จ๐ซ: Connect with someone experienced in data analytics for guidance(like me ๐Ÿ˜…). They can provide valuable insights, feedback, and keep you on track.

๐Ÿ’โ€โ™€๏ธ๐‚๐ซ๐ž๐š๐ญ๐ž ๐๐จ๐ซ๐ญ๐Ÿ๐จ๐ฅ๐ข๐จ: Compile your projects in a portfolio or on GitHub. A solid portfolio catches a recruiterโ€™s eye.

๐Ÿ’โ€โ™€๏ธ๐๐ซ๐š๐œ๐ญ๐ข๐œ๐ž ๐Ÿ๐จ๐ซ ๐ˆ๐ง๐ญ๐ž๐ซ๐ฏ๐ข๐ž๐ฐ๐ฌ: Practice SQL queries and Python coding challenges on Hackerrank & LeetCode. Strengthening your problem-solving skills will prepare you for interviews.
๐Ÿ‘1
๐Ÿฒ ๐—™๐—ฅ๐—˜๐—˜ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป, ๐—ฆ๐—ค๐—Ÿ & ๐— ๐—Ÿ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Looking to break into data analytics, data science, or machine learning this year?๐Ÿ’ป

These 6 free online courses from world-class universities and tech giants like Harvard, Stanford, MIT, Google, and IBM will help you build a job-ready skillset๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4ksUTFi

Enjoy Learning โœ…๏ธ
ML Engineer vs AI Engineer

ML Engineer / MLOps

-Focuses on the deployment of machine learning models.
-Bridges the gap between data scientists and production environments.
-Designing and implementing machine learning models into production.
-Automating and orchestrating ML workflows and pipelines.
-Ensuring reproducibility, scalability, and reliability of ML models.
-Programming: Python, R, Java
-Libraries: TensorFlow, PyTorch, Scikit-learn
-MLOps: MLflow, Kubeflow, Docker, Kubernetes, Git, Jenkins, CI/CD tools

AI Engineer / Developer

- Applying AI techniques to solve specific problems.
- Deep knowledge of AI algorithms and their applications.
- Developing and implementing AI models and systems.
- Building and integrating AI solutions into existing applications.
- Collaborating with cross-functional teams to understand requirements and deliver AI-powered solutions.
- Programming: Python, Java, C++
- Libraries: TensorFlow, PyTorch, Keras, OpenCV
- Frameworks: ONNX, Hugging Face
๐Ÿ‘1
๐Ÿฑ ๐—ฃ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ณ๐˜‚๐—น ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ท๐—ฒ๐—ฐ๐˜๐˜€ ๐˜๐—ผ ๐—”๐—ฑ๐—ฑ ๐˜๐—ผ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ฅ๐—ฒ๐˜€๐˜‚๐—บ๐—ฒ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Looking to land an internship, secure a tech job, or start freelancing in 2025?๐Ÿ‘จโ€๐Ÿ’ป

Python projects are one of the best ways to showcase your skills and stand out in todayโ€™s competitive job market๐Ÿ—ฃ๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4kvrfiL

Stand out in todayโ€™s competitive job marketโœ…๏ธ
Here are few Important SQL interview questions with topics

Basic SQL Concepts:

Explain the difference between SQL and NoSQL databases.
What are the common data types in SQL?

Querying:

How do you retrieve all records from a table named "Customers"?
What is the difference between SELECT and SELECT DISTINCT in a query?
Explain the purpose of the WHERE clause in SQL queries.

Joins:
Describe the types of joins in SQL (INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN).
How would you retrieve data from two tables using an INNER JOIN?

Aggregate Functions:
What are aggregate functions in SQL? Can you name a few?
How do you calculate the average, sum, and count of a column in a SQL query?

Grouping and Filtering:
Explain the GROUP BY clause and its use in SQL.
How would you filter the results of an SQL query using the HAVING clause?

Subqueries:
What is a subquery, and when would you use one in SQL?
Provide an example of a subquery in an SQL statement.

Indexes and Optimization:
Why are indexes important in a database?
How would you optimize a slow-running SQL query?

Normalization and Data Integrity:
What is database normalization, and why is it important?
How can you enforce data integrity in a SQL database?

Transactions:
What is a SQL transaction, and why would you use it?
Explain the concepts of ACID properties in database transactions.

Views and Stored Procedures:
What is a database view, and when would you create one?
What is a stored procedure, and how does it differ from a regular SQL query?

Advanced SQL:
Can you write a recursive SQL query, and when would you use recursion?
Explain the concept of window functions in SQL.

These questions cover a range of SQL topics, from basic concepts to more advanced techniques, and can help assess a candidate's knowledge and skills in SQL :)

Like this post if you need more ๐Ÿ‘โค๏ธ

Hope it helps :)
๐Ÿ‘1
Forwarded from Artificial Intelligence
๐Ÿฑ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ž๐—ถ๐—ฐ๐—ธ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ (๐—ช๐—ถ๐˜๐—ต ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ฒ๐˜€!)๐Ÿ˜

Start Here โ€” With Zero Cost and Maximum Value!๐Ÿ’ฐ๐Ÿ“Œ

If youโ€™re aiming for a career in data analytics, now is the perfect time to get started๐Ÿš€

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3Fq7E4p

A great starting point if youโ€™re brand new to the fieldโœ…๏ธ
1. How to change a table name in SQL?
This is the command to change a table name in SQL:
ALTER TABLE table_name
RENAME TO new_table_name;
We will start off by giving the keywords ALTER TABLE, then we will follow it up by giving the original name of the table, after that, we will give in the keywords RENAME TO and finally, we will give the new table name.

2. How to use LIKE in SQL?
The LIKE operator checks if an attribute value matches a given string pattern. Here is an example of LIKE operator
SELECT * FROM employees WHERE first_name like โ€˜Stevenโ€™;
With this command, we will be able to extract all the records where the first name is like โ€œStevenโ€.

3. If we drop a table, does it also drop related objects like constraints, indexes, columns, default, views and sorted procedures?
Yes, SQL server drops all related objects, which exists inside a table like constraints, indexes, columns, defaults etc. But dropping a table will not drop views and sorted procedures as they exist outside the table.

4. Explain SQL Constraints.
SQL Constraints are used to specify the rules of data type in a table. They can be specified while creating and altering the table. The following are the constraints in SQL: NOT NULL CHECK DEFAULT UNIQUE PRIMARY KEY FOREIGN KEY
๐Ÿ‘2
๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐— ๐—ถ๐—ฐ๐—ฟ๐—ผ๐˜€๐—ผ๐—ณ๐˜ ๐—”๐˜‡๐˜‚๐—ฟ๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐—ฃ๐—ฎ๐˜๐—ต๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด๐Ÿ˜

๐Ÿ“Š Ready to Dive Into the World of Data Engineering and Analytics?๐Ÿ“Œ

If youโ€™re planning to enter the field of data engineering or want to level up your cloud-based analytics skills, Microsoft Azure has just what you need โ€” for free!๐Ÿ‘จโ€๐ŸŽ“๐ŸŽŠ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3ZoW2Fy

Enjoy Learning โœ…๏ธ
๐—™๐—ฟ๐—ฒ๐—ฒ ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐—ž๐—ถ๐—ฐ๐—ธ๐˜€๐˜๐—ฎ๐—ฟ๐˜ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—๐—ผ๐˜‚๐—ฟ๐—ป๐—ฒ๐˜† ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Ready to upskill in data science for free?๐Ÿš€

Here are 3 amazing courses to build a strong foundation in Exploratory Data Analysis, SQL, and Python๐Ÿ‘จโ€๐Ÿ’ป๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/43GspSO

Take the first step towards your dream career!โœ…๏ธ
Beyond Data Analytics: Expanding Your Career Horizons

Once you've mastered core and advanced analytics skills, it's time to explore career growth opportunities beyond traditional data analyst roles. Here are some potential paths:

1๏ธโƒฃ Data Science & AI Specialist ๐Ÿค–

Dive deeper into machine learning, deep learning, and AI-powered analytics.

Learn advanced Python libraries like TensorFlow, PyTorch, and Scikit-Learn.

Work on predictive modeling, NLP, and AI automation.


2๏ธโƒฃ Data Engineering ๐Ÿ—๏ธ

Shift towards building scalable data infrastructure.

Master ETL pipelines, cloud databases (BigQuery, Snowflake, Redshift), and Apache Spark.

Learn Docker, Kubernetes, and Airflow for workflow automation.


3๏ธโƒฃ Business Intelligence & Data Strategy ๐Ÿ“Š

Transition into high-level decision-making roles.

Become a BI Consultant or Data Strategist, focusing on storytelling and business impact.

Lead data-driven transformation projects in organizations.


4๏ธโƒฃ Product Analytics & Growth Strategy ๐Ÿ“ˆ

Work closely with product managers to optimize user experience and engagement.

Use A/B testing, cohort analysis, and customer segmentation to drive product decisions.

Learn Mixpanel, Amplitude, and Google Analytics.


5๏ธโƒฃ Data Governance & Privacy Expert ๐Ÿ”

Specialize in data compliance, security, and ethical AI.

Learn about GDPR, CCPA, and industry regulations.

Work on data quality, lineage, and metadata management.


6๏ธโƒฃ AI-Powered Automation & No-Code Analytics ๐Ÿš€

Explore AutoML tools, AI-assisted analytics, and no-code platforms like Alteryx and DataRobot.

Automate repetitive tasks and create self-service analytics solutions for businesses.


7๏ธโƒฃ Freelancing & Consulting ๐Ÿ’ผ

Offer data analytics services as an independent consultant.

Build a personal brand through LinkedIn, Medium, or YouTube.

Monetize your expertise via online courses, coaching, or workshops.


8๏ธโƒฃ Transitioning to Leadership Roles

Become a Data Science Manager, Head of Analytics, or Chief Data Officer.

Focus on mentoring teams, driving data strategy, and influencing business decisions.

Develop stakeholder management, communication, and leadership skills.


Mastering data analytics opens up multiple career pathwaysโ€”whether in AI, business strategy, engineering, or leadership. Choose your path, keep learning, and stay ahead of industry trends! ๐Ÿš€

#dataanalytics
๐Ÿ‘1
๐Ÿฏ ๐—™๐—ฟ๐—ฒ๐—ฒ ๐—ข๐—ฟ๐—ฎ๐—ฐ๐—น๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—™๐˜‚๐˜๐˜‚๐—ฟ๐—ฒ-๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฑ๐Ÿ˜

Oracle, one of the worldโ€™s most trusted tech giants, offers free training and globally recognized certifications to help you build expertise in cloud computing, Java, and enterprise applications.๐Ÿ‘จโ€๐ŸŽ“๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3GZZUXi

All at zero cost!๐ŸŽŠโœ…๏ธ
๐Ÿ”ฅ1