Few topics that you need to cover for Kafka interview:
1. Topic
- Partition
- Message ordering
- Replication
- Offset
- Compression
2. Producer
- Serialization
- Batching
- Compaction
- Intervals
- Sync & Async
- Idempotence
- Some important properties
3. Broker
- Kafka cluster
- Replication
- Retention
- Cleanup
- Graceful shut down
4. Consumer
- Deserialization
- Consumer group
- Consumption types
- Sync & Async
- Failure handling
- Some important properties
5. Zookeeper
6. Schema registry
7. Admin client API, MakeMirror
8. Kafka Streams
9. Kafka Connect
1. Topic
- Partition
- Message ordering
- Replication
- Offset
- Compression
2. Producer
- Serialization
- Batching
- Compaction
- Intervals
- Sync & Async
- Idempotence
- Some important properties
3. Broker
- Kafka cluster
- Replication
- Retention
- Cleanup
- Graceful shut down
4. Consumer
- Deserialization
- Consumer group
- Consumption types
- Sync & Async
- Failure handling
- Some important properties
5. Zookeeper
6. Schema registry
7. Admin client API, MakeMirror
8. Kafka Streams
9. Kafka Connect
๐1
๐ฆTop 10 Data Science Tools๐ฆ
Here we will examine the top best Data Science tools that are utilized generally by data researchers and analysts. But prior to beginning let us discuss about what is Data Science.
๐ฐWhat is Data Science ?
Data science is a quickly developing field that includes the utilization of logical strategies, calculations, and frameworks to extract experiences and information from organized and unstructured data .
๐ฝTop Data Science Tools that are normally utilized :
1.) Jupyter Notebook : Jupyter Notebook is an open-source web application that permits clients to make and share archives that contain live code, conditions, representations, and narrative text .
2.) Keras : Keras is a famous open-source brain network library utilized in data science. It is known for its usability and adaptability.
Keras provides a range of tools and techniques for dealing with common data science problems, such as overfitting, underfitting, and regularization.
3.) PyTorch : PyTorch is one more famous open-source AI library utilized in information science. PyTorch also offers easy-to-use interfaces for various tasks such as data loading, model building, training, and deployment, making it accessible to beginners as well as experts in the field of machine learning.
4.) TensorFlow : TensorFlow allows data researchers to play out an extensive variety of AI errands, for example, image recognition , natural language processing , and deep learning.
5.) Spark : Spark allows data researchers to perform data processing tasks like data control, investigation, and machine learning , rapidly and effectively.
6.) Hadoop : Hadoop provides a distributed file system (HDFS) and a distributed processing framework (MapReduce) that permits data researchers to handle enormous datasets rapidly.
7.) Tableau : Tableau is a strong data representation tool that permits data researchers to make intuitive dashboards and perceptions. Tableau allows users to combine multiple charts.
8.) SQL : SQL (Structured Query Language) SQL permits data researchers to perform complex queries , join tables, and aggregate data, making it simple to extricate bits of knowledge from enormous datasets. It is a powerful tool for data management, especially for large datasets.
9.) Power BI : Power BI is a business examination tool that conveys experiences and permits clients to make intuitive representations and reports without any problem.
10.) Excel : Excel is a spreadsheet program that broadly utilized in data science. It is an amazing asset for information the board, examination, and visualization .Excel can be used to explore the data by creating pivot tables, histograms, scatterplots, and other types of visualizations.
Here we will examine the top best Data Science tools that are utilized generally by data researchers and analysts. But prior to beginning let us discuss about what is Data Science.
๐ฐWhat is Data Science ?
Data science is a quickly developing field that includes the utilization of logical strategies, calculations, and frameworks to extract experiences and information from organized and unstructured data .
๐ฝTop Data Science Tools that are normally utilized :
1.) Jupyter Notebook : Jupyter Notebook is an open-source web application that permits clients to make and share archives that contain live code, conditions, representations, and narrative text .
2.) Keras : Keras is a famous open-source brain network library utilized in data science. It is known for its usability and adaptability.
Keras provides a range of tools and techniques for dealing with common data science problems, such as overfitting, underfitting, and regularization.
3.) PyTorch : PyTorch is one more famous open-source AI library utilized in information science. PyTorch also offers easy-to-use interfaces for various tasks such as data loading, model building, training, and deployment, making it accessible to beginners as well as experts in the field of machine learning.
4.) TensorFlow : TensorFlow allows data researchers to play out an extensive variety of AI errands, for example, image recognition , natural language processing , and deep learning.
5.) Spark : Spark allows data researchers to perform data processing tasks like data control, investigation, and machine learning , rapidly and effectively.
6.) Hadoop : Hadoop provides a distributed file system (HDFS) and a distributed processing framework (MapReduce) that permits data researchers to handle enormous datasets rapidly.
7.) Tableau : Tableau is a strong data representation tool that permits data researchers to make intuitive dashboards and perceptions. Tableau allows users to combine multiple charts.
8.) SQL : SQL (Structured Query Language) SQL permits data researchers to perform complex queries , join tables, and aggregate data, making it simple to extricate bits of knowledge from enormous datasets. It is a powerful tool for data management, especially for large datasets.
9.) Power BI : Power BI is a business examination tool that conveys experiences and permits clients to make intuitive representations and reports without any problem.
10.) Excel : Excel is a spreadsheet program that broadly utilized in data science. It is an amazing asset for information the board, examination, and visualization .Excel can be used to explore the data by creating pivot tables, histograms, scatterplots, and other types of visualizations.
โค1๐1
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ ๐๐ง ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ๐บ๐ถ๐ป๐ด ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ต๐ฎ๐ ๐๐๐ฒ๐ฟ๐ ๐๐ฒ๐ด๐ถ๐ป๐ป๐ฒ๐ฟ ๐ฆ๐ต๐ผ๐๐น๐ฑ ๐ฆ๐๐ฎ๐ฟ๐ ๐ช๐ถ๐๐ต๐
๐ป Want to Learn Coding but Donโt Know Where to Start?๐ฏ
Whether youโre a student, career switcher, or complete beginner, this curated list is your perfect launchpad into tech๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/437ow7Y
All The Best ๐
๐ป Want to Learn Coding but Donโt Know Where to Start?๐ฏ
Whether youโre a student, career switcher, or complete beginner, this curated list is your perfect launchpad into tech๐ป๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/437ow7Y
All The Best ๐
Kavitha's Journey to become a Data Engineer ๐๐
1. Startup to Dream Job Journey:
- Started at a startup in India, transitioned to Infosys, then grabbed UK opportunity.
- Shifted from legacy Mainframe to AWS Cloud, pursued Master's from illinoisstateu, and secured dream job at Statefarm.
2. Learn Fundamentals:
- Assess skills, understand role.
- Gain proficiency in Python, SQL.
- Learn data technologies.
3. Database and Modeling Skills:
- Understand databases, gain proficiency.
- Learn data modeling principles.
4. Master ETL, Warehousing, and Visualization:
- Understand ETL, data warehousing.
- Gain experience in building warehouses.
- Familiarize with visualization tools.
- Got Certified as AWS Solutions Architect.
5. Utilize LinkedIn for Job Search:
- Network and connect with professionals.
- Showcase skills and achievements.
- Utilize job search feature, leading to dream job at Statefarm.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
1. Startup to Dream Job Journey:
- Started at a startup in India, transitioned to Infosys, then grabbed UK opportunity.
- Shifted from legacy Mainframe to AWS Cloud, pursued Master's from illinoisstateu, and secured dream job at Statefarm.
2. Learn Fundamentals:
- Assess skills, understand role.
- Gain proficiency in Python, SQL.
- Learn data technologies.
3. Database and Modeling Skills:
- Understand databases, gain proficiency.
- Learn data modeling principles.
4. Master ETL, Warehousing, and Visualization:
- Understand ETL, data warehousing.
- Gain experience in building warehouses.
- Familiarize with visualization tools.
- Got Certified as AWS Solutions Architect.
5. Utilize LinkedIn for Job Search:
- Network and connect with professionals.
- Showcase skills and achievements.
- Utilize job search feature, leading to dream job at Statefarm.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
๐2
Forwarded from Artificial Intelligence
๐ฐ ๐๐ฟ๐ฒ๐ฒ ๐ฃ๐ฟ๐ฎ๐ฐ๐๐ถ๐ฐ๐ฒ ๐ช๐ฒ๐ฏ๐๐ถ๐๐ฒ๐ ๐๐ผ ๐ฆ๐ต๐ฎ๐ฟ๐ฝ๐ฒ๐ป ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
๐ฏ Want to Sharpen Your Data Analytics Skills with Hands-On Practice?๐
Watching tutorials can only take you so farโpractical application is what truly builds confidence and prepares you for the real world๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GQGR1B
Start practicing what actually gets you hiredโ ๏ธ
๐ฏ Want to Sharpen Your Data Analytics Skills with Hands-On Practice?๐
Watching tutorials can only take you so farโpractical application is what truly builds confidence and prepares you for the real world๐
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3GQGR1B
Start practicing what actually gets you hiredโ ๏ธ
๐1
SQL Interview Questions for 0-1 year of Experience (Asked in Top Product-Based Companies).
Sharpen your SQL skills with these real interview questions!
Q1. Customer Purchase Patterns -
You have two tables, Customers and Purchases: CREATE TABLE Customers ( customer_id INT PRIMARY KEY, customer_name VARCHAR(255) ); CREATE TABLE Purchases ( purchase_id INT PRIMARY KEY, customer_id INT, product_id INT, purchase_date DATE );
Assume necessary INSERT statements are already executed.
Write an SQL query to find the names of customers who have purchased more than 5 different products within the last month. Order the result by customer_name.
Q2. Call Log Analysis -
Suppose you have a CallLogs table: CREATE TABLE CallLogs ( log_id INT PRIMARY KEY, caller_id INT, receiver_id INT, call_start_time TIMESTAMP, call_end_time TIMESTAMP );
Assume necessary INSERT statements are already executed.
Write a query to find the average call duration per user. Include only users who have made more than 10 calls in total. Order the result by average duration descending.
Q3. Employee Project Allocation - Consider two tables, Employees and Projects:
CREATE TABLE Employees ( employee_id INT PRIMARY KEY, employee_name VARCHAR(255), department VARCHAR(255) ); CREATE TABLE Projects ( project_id INT PRIMARY KEY, lead_employee_id INT, project_name VARCHAR(255), start_date DATE, end_date DATE );
Assume necessary INSERT statements are already executed.
The goal is to write an SQL query to find the names of employees who have led more than 3 projects in the last year. The result should be ordered by the number of projects led.
Sharpen your SQL skills with these real interview questions!
Q1. Customer Purchase Patterns -
You have two tables, Customers and Purchases: CREATE TABLE Customers ( customer_id INT PRIMARY KEY, customer_name VARCHAR(255) ); CREATE TABLE Purchases ( purchase_id INT PRIMARY KEY, customer_id INT, product_id INT, purchase_date DATE );
Assume necessary INSERT statements are already executed.
Write an SQL query to find the names of customers who have purchased more than 5 different products within the last month. Order the result by customer_name.
Q2. Call Log Analysis -
Suppose you have a CallLogs table: CREATE TABLE CallLogs ( log_id INT PRIMARY KEY, caller_id INT, receiver_id INT, call_start_time TIMESTAMP, call_end_time TIMESTAMP );
Assume necessary INSERT statements are already executed.
Write a query to find the average call duration per user. Include only users who have made more than 10 calls in total. Order the result by average duration descending.
Q3. Employee Project Allocation - Consider two tables, Employees and Projects:
CREATE TABLE Employees ( employee_id INT PRIMARY KEY, employee_name VARCHAR(255), department VARCHAR(255) ); CREATE TABLE Projects ( project_id INT PRIMARY KEY, lead_employee_id INT, project_name VARCHAR(255), start_date DATE, end_date DATE );
Assume necessary INSERT statements are already executed.
The goal is to write an SQL query to find the names of employees who have led more than 3 projects in the last year. The result should be ordered by the number of projects led.
โค1๐1
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐ ๐๐ง ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ง๐ต๐ฎ๐ ๐ช๐ถ๐น๐น ๐๐ผ๐ผ๐๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ๐
๐ Want to Learn Data Analytics but Hate the High Price Tags?๐ฐ๐
Good news: MIT is offering free, high-quality data analytics courses through their OpenCourseWare platform๐ป๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iXNfS3
All The Best ๐
๐ Want to Learn Data Analytics but Hate the High Price Tags?๐ฐ๐
Good news: MIT is offering free, high-quality data analytics courses through their OpenCourseWare platform๐ป๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4iXNfS3
All The Best ๐
๐1
oops.pdf
126.3 KB
OOPS Interview Questions and Answers ๐ฅ
sql-basics-cheat-sheet-a4.pdf
120.5 KB
SQL Basics Cheat Sheet
LearnSQL, 2022
LearnSQL, 2022
๐4โค2
Forwarded from Artificial Intelligence
๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป๐ ๐๐ฟ๐ผ๐บ ๐ง๐ผ๐ฝ ๐๐ผ๐บ๐ฝ๐ฎ๐ป๐ถ๐ฒ๐๐
Top Companies Offering FREE Certification Courses To Upskill In 2025
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/4jpmI0I
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Qualc :- https://pdlink.in/3YrFTyK
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified ๐
Top Companies Offering FREE Certification Courses To Upskill In 2025
Google:- https://pdlink.in/3YsujTV
Microsoft :- https://pdlink.in/4jpmI0I
Cisco :- https://pdlink.in/4fYr1xO
HP :- https://pdlink.in/3DrNsxI
IBM :- https://pdlink.in/44GsWoC
Qualc :- https://pdlink.in/3YrFTyK
TCS :- https://pdlink.in/4cHavCa
Infosys :- https://pdlink.in/4jsHZXf
Enroll For FREE & Get Certified ๐
โค1๐1
๐ Mastering Spark: 20 Interview Questions Demystified!
1๏ธโฃ MapReduce vs. Spark: Learn how Spark achieves 100x faster performance compared to MapReduce.
2๏ธโฃ RDD vs. DataFrame: Unravel the key differences between RDD and DataFrame, and discover what makes DataFrame unique.
3๏ธโฃ DataFrame vs. Datasets: Delve into the distinctions between DataFrame and Datasets in Spark.
4๏ธโฃ RDD Operations: Explore the various RDD operations that power Spark.
5๏ธโฃ Narrow vs. Wide Transformations: Understand the differences between narrow and wide transformations in Spark.
6๏ธโฃ Shared Variables: Discover the shared variables that facilitate distributed computing in Spark.
7๏ธโฃ Persist vs. Cache: Differentiate between the persist and cache functionalities in Spark.
8๏ธโฃ Spark Checkpointing: Learn about Spark checkpointing and how it differs from persisting to disk.
9๏ธโฃ SparkSession vs. SparkContext: Understand the roles of SparkSession and SparkContext in Spark applications.
๐ spark-submit Parameters: Explore the parameters to specify in the spark-submit command.
1๏ธโฃ1๏ธโฃ Cluster Managers in Spark: Familiarize yourself with the different types of cluster managers available in Spark.
1๏ธโฃ2๏ธโฃ Deploy Modes: Learn about the deploy modes in Spark and their significance.
1๏ธโฃ3๏ธโฃ Executor vs. Executor Core: Distinguish between executor and executor core in the Spark ecosystem.
1๏ธโฃ4๏ธโฃ Shuffling Concept: Gain insights into the shuffling concept in Spark and its importance.
1๏ธโฃ5๏ธโฃ Number of Stages in Spark Job: Understand how to decide the number of stages created in a Spark job.
1๏ธโฃ6๏ธโฃ Spark Job Execution Internals: Get a peek into how Spark internally executes a program.
1๏ธโฃ7๏ธโฃ Direct Output Storage: Explore the possibility of directly storing output without sending it back to the driver.
1๏ธโฃ8๏ธโฃ Coalesce and Repartition: Learn about the applications of coalesce and repartition in Spark.
1๏ธโฃ9๏ธโฃ Physical and Logical Plan Optimization: Uncover the optimization techniques employed in Spark's physical and logical plans.
2๏ธโฃ0๏ธโฃ Treereduce and Treeaggregate: Discover why treereduce and treeaggregate are preferred over reduceByKey and aggregateByKey in certain scenarios.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
1๏ธโฃ MapReduce vs. Spark: Learn how Spark achieves 100x faster performance compared to MapReduce.
2๏ธโฃ RDD vs. DataFrame: Unravel the key differences between RDD and DataFrame, and discover what makes DataFrame unique.
3๏ธโฃ DataFrame vs. Datasets: Delve into the distinctions between DataFrame and Datasets in Spark.
4๏ธโฃ RDD Operations: Explore the various RDD operations that power Spark.
5๏ธโฃ Narrow vs. Wide Transformations: Understand the differences between narrow and wide transformations in Spark.
6๏ธโฃ Shared Variables: Discover the shared variables that facilitate distributed computing in Spark.
7๏ธโฃ Persist vs. Cache: Differentiate between the persist and cache functionalities in Spark.
8๏ธโฃ Spark Checkpointing: Learn about Spark checkpointing and how it differs from persisting to disk.
9๏ธโฃ SparkSession vs. SparkContext: Understand the roles of SparkSession and SparkContext in Spark applications.
๐ spark-submit Parameters: Explore the parameters to specify in the spark-submit command.
1๏ธโฃ1๏ธโฃ Cluster Managers in Spark: Familiarize yourself with the different types of cluster managers available in Spark.
1๏ธโฃ2๏ธโฃ Deploy Modes: Learn about the deploy modes in Spark and their significance.
1๏ธโฃ3๏ธโฃ Executor vs. Executor Core: Distinguish between executor and executor core in the Spark ecosystem.
1๏ธโฃ4๏ธโฃ Shuffling Concept: Gain insights into the shuffling concept in Spark and its importance.
1๏ธโฃ5๏ธโฃ Number of Stages in Spark Job: Understand how to decide the number of stages created in a Spark job.
1๏ธโฃ6๏ธโฃ Spark Job Execution Internals: Get a peek into how Spark internally executes a program.
1๏ธโฃ7๏ธโฃ Direct Output Storage: Explore the possibility of directly storing output without sending it back to the driver.
1๏ธโฃ8๏ธโฃ Coalesce and Repartition: Learn about the applications of coalesce and repartition in Spark.
1๏ธโฃ9๏ธโฃ Physical and Logical Plan Optimization: Uncover the optimization techniques employed in Spark's physical and logical plans.
2๏ธโฃ0๏ธโฃ Treereduce and Treeaggregate: Discover why treereduce and treeaggregate are preferred over reduceByKey and aggregateByKey in certain scenarios.
Data Engineering Interview Preparation Resources: https://whatsapp.com/channel/0029Vaovs0ZKbYMKXvKRYi3C
๐2
๐๐ฟ๐ฒ๐ฒ ๐ ๐ถ๐ฐ๐ฟ๐ผ๐๐ผ๐ณ๐ & ๐๐ถ๐ป๐ธ๐ฒ๐ฑ๐๐ป ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ ๐๐ฎ๐ป๐ฑ ๐ง๐ผ๐ฝ ๐๐ผ๐ฏ๐ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Start your journey with this FREE Generative AI course offered by Microsoft and LinkedIn.
Itโs part of their Career Essentials program designed to make you job-ready with real-world AI skills.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jY0cwB
This certification will boost your resumeโ ๏ธ
Start your journey with this FREE Generative AI course offered by Microsoft and LinkedIn.
Itโs part of their Career Essentials program designed to make you job-ready with real-world AI skills.
๐๐ข๐ง๐ค๐:-
https://pdlink.in/4jY0cwB
This certification will boost your resumeโ ๏ธ
๐1
Learning and Practicing SQL: Resources and Platforms
1. https://sqlbolt.com/
2. https://sqlzoo.net/
3. https://www.codecademy.com/learn/learn-sql
4. https://www.w3schools.com/sql/
5. https://www.hackerrank.com/domains/sql
6. https://www.windowfunctions.com/
7. https://selectstarsql.com/
8. https://quip.com/2gwZArKuWk7W
9. https://leetcode.com/problemset/database/
10. http://thedatamonk.com/
1. https://sqlbolt.com/
2. https://sqlzoo.net/
3. https://www.codecademy.com/learn/learn-sql
4. https://www.w3schools.com/sql/
5. https://www.hackerrank.com/domains/sql
6. https://www.windowfunctions.com/
7. https://selectstarsql.com/
8. https://quip.com/2gwZArKuWk7W
9. https://leetcode.com/problemset/database/
10. http://thedatamonk.com/
๐3
๐ฑ ๐๐ฟ๐ฒ๐ฒ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐๐ผ ๐ฆ๐ธ๐๐ฟ๐ผ๐ฐ๐ธ๐ฒ๐ ๐ฌ๐ผ๐๐ฟ ๐๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฑ๐
Whether youโre a beginner, career switcher, or just curious about data analytics, these 5 free online courses are your perfect starting point!๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FdLMcv
Gain the skills to manage analytics projectsโ ๏ธ
Whether youโre a beginner, career switcher, or just curious about data analytics, these 5 free online courses are your perfect starting point!๐ฏ
๐๐ข๐ง๐ค๐:-
https://pdlink.in/3FdLMcv
Gain the skills to manage analytics projectsโ ๏ธ